Detailed introduction to Python string formatting
This article brings you a detailed introduction to the formatting of Python strings. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you. .
I believe that many people use the "%s" % v syntax when formatting strings. PEP 3101 proposes a more advanced formatting method str.format() and becomes the standard in Python 3. To replace the old %s formatting syntax, CPython has implemented this method since 2.6 (other interpreters have not verified it).
format()
The new format() method is actually more like a simplified version of the template engine (Template Engine), with very rich functions.
The replacement variable in the template is surrounded by {} and divided into two parts by :, the second half of which, format_spec, will be discussed separately later.
The first half has three uses:
- empty
- The number representing the position
- The identifier of the keyword
This is consistent with the parameter category of function calls
print("{} {}".format("Hello", "World")) # 等同于以下几种 print("{0} {1}".format("Hello", "World")) print("{hello} {world}".format(hello="Hello", world="World")) print("{0}{1}{0}".format("H", "e")) # Hello World # Hello World # Hello World # HeH
In addition, just like the unpacking of function parameters, the unpacking operation can also be used directly in format()
print("{author}.{city}".format(**{"author": "Miracle", "city": "上海"})) print("{} {}".format(*["Miracle", "上海"])) Miracle.上海 Miracle 上海
In the template, you can also obtain the attributes or values in the variable through .identifier and [key] (it should be noted that "{}{}" is equivalent to "{0}{1}")
data = {'author': 'Miracle', 'like': 'papapa'} print("Author: {0[author]}, Like: {0[like]}".format(data)) langs = ["Python", "Ruby"] print("{0[0]} vs {0[1]}".format(langs)) print("\n====\nHelp(format):{.__doc__}".format(str.format)) # Name: Python, Score: 100 # Python vs Ruby # ==== # Help(format): # S.format(*args, **kwargs) -> str
Forced conversion, you can force the replaced variable through ! r|s|a
- "{!r}" Call repr() on the variable
- "{ !s}" Call str() on the variable
- "{!a}" Call ascii() on the variable
The part after the colon defines the output style
align represents the alignment direction, usually used in conjunction with width, and fill is the filling character (default is blank):
for align, text in zip("<^>", ["left", "center", "right"]): # 务必看懂这句话 print("{:{fill}{align}16}".format(text, fill=align, align=align)) print("{:0=10}".format(100)) # = 只允许数字 # left<<<<<<<<<<<< # ^^^^^center^^^^^ # >>>>>>>>>>>right # 0000000100
At the same time, it can be seen that {} can be nested in the style setting, but it must pass the keyword Specified, and can only be nested one level.
The next step is the symbol style: |-|' ' respectively specifies whether the number requires a mandatory symbol (the space means that it will not be displayed when the number is positive but one space will be reserved)
print("{0:+}\n{1:-}\n{0: }".format(3.14, -3.14)) # +3.14 # -3.14 # 3.14
Use Whether a prefix symbol is needed to represent numbers in special formats (binary, hexadecimal, etc.)
Comma is also used to represent numbers whether they need to be separated at the thousands place
0 is equivalent to the previous {:0=} is right-aligned and filled with 0s
print("Binary: {0:b} => {0:#b}".format(3)) print("Large Number: {0:} => {0:,}".format(1.25e6)) print("Padding: {0:16} => {0:016}".format(3)) # Binary: 11 => 0b11 # Large Number: 1250000.0 => 1,250,000.0 # Padding: 3 => 0000000000000003
Finally, Xiaopang will introduce to you the familiar decimal point precision issues, .n and formatting types.
Only some examples are given here, please refer to the documentation for details:
from math import pi print("pi = {pi:.2}, also = {pi:.7}".format(pi=pi)) # pi = 3.1, also = 3.141593
Integer
for t in "b c d #o #x #X n".split(): print("Type {0:>2} of {1} shows: {1:{t}}".format(t, 97, t=t)) # Type b of 97 shows: 1100001 # Type c of 97 shows: a # Type d of 97 shows: 97 # Type #o of 97 shows: 0o141 # Type #x of 97 shows: 0x61 # Type #X of 97 shows: 0X61 # Type n of 97 shows: 97
Float
for t, n in zip("eEfFgGn%", [12345, 12345, 1.3, 1.3, 1, 2, 3.14, 0.985]): print("Type {} shows: {:.2{t}}".format(t, n, t=t)) # Type e shows: 1.23e+04 # Type E shows: 1.23E+04 # Type f shows: 1.30 # Type F shows: 1.30 # Type g shows: 1 # Type G shows: 2 # Type n shows: 3.1 # Type % shows: 98.50%
String (default)
try: print("{:s}".format(123)) except: print("{}".format(456)) # 456
This article has ended here. For more exciting content, you can pay attention to the python video tutorial column on the PHP Chinese website!
The above is the detailed content of Detailed introduction to Python string formatting. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
