


openjudge 2971: Catch the Cow Problem Solving Process (with code)
This article mainly talks about the problem-solving process of openjudge 2971: Catch the Cow. Friends in need can learn about it. I hope it can be helpful to you.
Total time limit: 2000ms
Memory limit: 65536kB
Description
The farmer knows the location of a cow and wants to catch it. Both the farmer and the cow are located on the number line. The farmer starts at point N (0<=N<=100000) and the cow starts at point K (0<=K<=100000). The farmer has two ways to move:
1. Move from X to X-1 or X 1. Each move takes one minute.
2. Move from X to 2*X. Each move takes one minute.
Suppose the cow is unaware of the farmer’s actions and stands still. What is the minimum amount of time it takes for the farmer to catch the cow?
Input
two integers, N and K
Output
an integer, the minimum number of minutes it takes for the farmer to catch the cow
Sample input
5 17
Sample output
4
This question is a water question. but. It's very confusing. To sum up, BFS is
1, the array is open enough.
2, Niu and I’s direction judgment.
3, repeat the judgment of joining the team.
4, transcendent judgment.
5, good character. This is the key.
The code is as follows:
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 int x,y; 5 struct node 6 { 7 int x,times; 8 }; 9 node q[3000010]; 10 int visit[1000010]; 11 int heads=1,last=1; 12 int main() 13 { 14 scanf("%d%d",&x,&y); 15 if(y<x) 16 { 17 printf("%d",x-y); 18 return 0; 19 } 20 node a; 21 a.x=x;a.times=0; 22 q[heads]=a; 23 while(heads<=last) 24 { 25 node n=q[heads]; 26 heads++; 27 if(n.x==y) 28 { 29 printf("%d",n.times); 30 break; 31 } 32 node n1=n; 33 n1.times++; 34 n1.x+=1; 35 if(!visit[n1.x])q[++last]=n1 , visit[n1.x]=1; 36 n1.x-=2; 37 if(!visit[n1.x])q[++last]=n1 , visit[n1.x]=1; 38 n1.x+=1; 39 n1.x*=2; 40 if(n1.x<=100000&&!visit[n1.x])q[++last]=n1 , visit[n1.x]=1; 41 } 42 return 0; 43 }
It’s simply embarrassing.
Related tutorials: C Video tutorial
The above is the detailed content of openjudge 2971: Catch the Cow Problem Solving Process (with code). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Golang and C++ are garbage collected and manual memory management programming languages respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

To iterate over an STL container, you can use the container's begin() and end() functions to get the iterator range: Vector: Use a for loop to iterate over the iterator range. Linked list: Use the next() member function to traverse the elements of the linked list. Mapping: Get the key-value iterator and use a for loop to traverse it.

How to copy files in C++? Use std::ifstream and std::ofstream streams to read the source file, write to the destination file, and close the stream. 1. Create new streams of source and target files. 2. Check whether the stream is opened successfully. 3. Copy the file data block by block and close the stream to release resources.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

C++ templates are widely used in actual development, including container class templates, algorithm templates, generic function templates and metaprogramming templates. For example, a generic sorting algorithm can sort arrays of different types of data.

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.
