Home Backend Development Python Tutorial How python manages memory

How python manages memory

Jun 11, 2019 pm 05:07 PM
Memory management

How python manages memory

Python introduces a mechanism: reference counting to manage memory.

Python uses reference counting internally to keep track of objects in memory. Python internally records how many references an object has, that is, a reference count. When an object is created, a reference count is created. When the object is no longer When needed, this object's reference count reaches 0 and it is garbage collected.

To summarize, the reference count of an object will be increased by 1 in the following situations:

1. The object is created: x=4

2. Others Others are created: y=x

3. Passed as parameters to the function: foo(x)

4. As an element of the container object: a=[1,x,'33' ]

Reference count reduction situation

1. A local reference leaves its scope. For example, when the foo(x) function above ends, the object reference pointed to by x is decremented by 1.

2. The alias of the object is explicitly destroyed: del x; or del y

3. An alias of the object is assigned to another object: x=789

4. The object is removed from a window object: myList.remove(x)

5. The window object itself is destroyed: del myList, or the window object itself leaves the scope.

Garbage Collection

1. When there are parts of the memory that are no longer used, the garbage collector will clean them up. It checks for objects with a reference count of 0 and clears their space in memory. Of course, in addition to the reference count of 0 being cleared, there is another situation that will also be cleared by the garbage collector: when two objects refer to each other, their other references are already 0.

2. The garbage collection mechanism also has a circular garbage collector to ensure that the circular reference object is released (a refers to b, and b refers to a, causing its reference count to never be 0).

In Python, many times the memory applied for is small blocks of memory. These small blocks of memory will be released soon after application. Since these memory applications are not for creating objects, they are not There is no object-level memory pool mechanism. This means that Python will perform a large number of malloc and free operations during operation, and frequently switch between user mode and core mode, which will seriously affect the execution efficiency of Python. In order to speed up the execution efficiency of Python, Python introduces a memory pool mechanism to manage the application and release of small blocks of memory.

Memory pool mechanism

Python provides a garbage collection mechanism for memory, but it puts unused memory into the memory pool instead of returning it to the operating system.

All objects smaller than 256 bytes in Python use the allocator implemented by pymalloc, while large objects use the system's malloc. In addition, Python objects, such as integers, floating point numbers and Lists, have their own independent private memory pools, and their memory pools are not shared between objects. This means that if you allocate and free a large number of integers, the memory used to cache these integers can no longer be allocated to floating point numbers.

The above is the detailed content of How python manages memory. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C++ object layout is aligned with memory to optimize memory usage efficiency C++ object layout is aligned with memory to optimize memory usage efficiency Jun 05, 2024 pm 01:02 PM

C++ object layout and memory alignment optimize memory usage efficiency: Object layout: data members are stored in the order of declaration, optimizing space utilization. Memory alignment: Data is aligned in memory to improve access speed. The alignas keyword specifies custom alignment, such as a 64-byte aligned CacheLine structure, to improve cache line access efficiency.

Best practices for C++ function memory allocation and destruction in large code bases Best practices for C++ function memory allocation and destruction in large code bases Apr 22, 2024 am 11:09 AM

Best practices for C++ function memory allocation and destruction include: using local variables for static memory allocation. Use smart pointers for dynamic memory allocation. Memory is allocated in the constructor and destroyed in the destructor. Use custom memory managers for complex memory scenarios. Use exception handling to clean up resources and ensure that allocated memory is released when exceptions occur.

Extensions and advanced techniques for C++ function memory allocation and destruction Extensions and advanced techniques for C++ function memory allocation and destruction Apr 22, 2024 pm 05:21 PM

C++ function memory management provides extensions and advanced technologies, including: Custom allocator: allows users to define their own memory allocation strategies. placementnew and placementdelete: used when objects need to be allocated to specific memory locations. Advanced technologies: memory pools, smart pointers, and RAII to reduce memory leaks, improve performance, and simplify code.

C++ Memory Management: Custom Memory Allocator C++ Memory Management: Custom Memory Allocator May 03, 2024 pm 02:39 PM

Custom memory allocators in C++ allow developers to adjust memory allocation behavior according to needs. Creating a custom allocator requires inheriting std::allocator and rewriting the allocate() and deallocate() functions. Practical examples include: improving performance, optimizing memory usage, and implementing specific behaviors. When using it, you need to pay attention to avoid freeing memory, manage memory alignment, and perform benchmark tests.

Challenges and countermeasures of C++ memory management in multi-threaded environment? Challenges and countermeasures of C++ memory management in multi-threaded environment? Jun 05, 2024 pm 01:08 PM

In a multi-threaded environment, C++ memory management faces the following challenges: data races, deadlocks, and memory leaks. Countermeasures include: 1. Use synchronization mechanisms, such as mutexes and atomic variables; 2. Use lock-free data structures; 3. Use smart pointers; 4. (Optional) implement garbage collection.

How does C++ memory management interact with the operating system and virtual memory? How does C++ memory management interact with the operating system and virtual memory? Jun 02, 2024 pm 09:03 PM

C++ memory management interacts with the operating system, manages physical memory and virtual memory through the operating system, and efficiently allocates and releases memory for programs. The operating system divides physical memory into pages and pulls in the pages requested by the application from virtual memory as needed. C++ uses the new and delete operators to allocate and release memory, requesting memory pages from the operating system and returning them respectively. When the operating system frees physical memory, it swaps less used memory pages into virtual memory.

Reference counting mechanism in C++ memory management Reference counting mechanism in C++ memory management Jun 01, 2024 pm 08:07 PM

The reference counting mechanism is used in C++ memory management to track object references and automatically release unused memory. This technology maintains a reference counter for each object, and the counter increases and decreases when references are added or removed. When the counter drops to 0, the object is released without manual management. However, circular references can cause memory leaks, and maintaining reference counters increases overhead.

How to manage memory usage in PHP functions? How to manage memory usage in PHP functions? Apr 26, 2024 pm 12:12 PM

To manage memory usage in PHP functions: avoid declaring unnecessary variables; use lightweight data structures; release unused variables; optimize string processing; limit function parameters; optimize loops and conditions, such as avoiding infinite loops and using indexed arrays .

See all articles