Why data analysts should learn python
The advantages of Python are also very prominent, such as it is easy to get started, the code is concise and efficient, and it has become a data analysis tool for many academic researchers and ordinary enthusiasts. So why should data analysts learn Python? Below we will introduce these contents to you.
# Obtaining data is the first step in data analysis. Without data, the work of data analysis is meaningless. (Recommended learning: Python video tutorial)
Of course, there are many ways for us to obtain data, but the best way is to use Python. Python can help us obtain data with its powerful functions . Of course, languages such as Java can also implement crawler functions, but Python is relatively simple to implement. Moreover, the learning cost of Java is too high, while Python is very simple. Let's take a look at Python's data analysis function.
So what is the scope of use of Python?
In fact, python provides users with a series of data analysis packages. Frequently used analysis packages include Numpy and pandas; in addition, it also provides users with some efficient tools needed to operate large data sets. use tools. The amount of data processed by the average enterprise is actually between tens of thousands and hundreds of thousands. When it comes to larger-scale data, ordinary people may rarely have the opportunity to process large-scale data. However, the processing of tens of thousands or hundreds of thousands of data may be the normal data processing of small and medium-sized enterprises and research institutions at present and even in the future. In the face of such a scale of data, Excel will be so slow that people want to smash the computer, and SPSS Although professional statistical software such as , R and R are relatively better, most people do not use them. In this case, Python offers an excellent choice.
Python’s advantages are very outstanding, especially in data cleaning. It has been praised by data analysts. First of all, in terms of data cleaning, Python is not only flexible and easy to use, but also highly efficient. Compared with Traditional statistical software has great advantages. Experienced data analysts all know that data cleaning is almost the most time-consuming in the entire data analysis project. Then there is reusability. The program has good reusability. It can be written once and run directly next time, which can greatly reduce the amount of repeated work. Of course, with the ability to link to other data sources, Python can easily connect to the Internet to send/extract data, and can also access data from almost all storage format documents, including text documents, Excel, pictures, and various SQL databases. In this way, data analysts can not rely on others to provide data in a specific format, greatly improving the ability to use data. Finally, Python has good scalability. Python has the ability to process small data to big data, and its functions other than data analysis are also very powerful. There is absolutely no harm in learning it.
We have introduced to you the reasons why you must learn Python in the data analysis industry. It is not difficult to find that Python is indeed a very practical skill. Therefore, being able to use Python proficiently can help everyone better perform data analysis work.
For more Python related technical articles, please visit the Python Tutorial column to learn!
The above is the detailed content of Why data analysts should learn python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
