What to learn as a python data analyst
Data analyst is a type of data engineer Datician ['detɪʃən], which refers to professionals in different industries who specialize in collecting, sorting, and analyzing industry data, and making industry research, evaluation, and predictions based on data.
1. Mathematical knowledge (Recommended learning: Python video tutorial)
Mathematical knowledge is data analysis Basic knowledge of teachers. For junior data analysts, it is enough to understand some basic content related to descriptive statistics and have a certain ability to calculate formulas. Understanding common statistical model algorithms is a bonus.
For senior data analysts, knowledge related to statistical models is a necessary ability, and it is best to have a certain understanding of linear algebra (mainly knowledge related to matrix calculations).
For data mining engineers, in addition to statistics, they also need to be proficient in using various algorithms, and the requirements for mathematics are the highest.
So data analysis does not necessarily require very good math skills to learn. It just depends on which direction you want to develop. Data analysis also has a "literary" side, especially girls, they can go in the direction of document writing. develop.
2. Analysis Tools
For junior data analysts, it is necessary to be able to play with Excel and be proficient in using pivot tables and formulas. VBA is a plus. In addition, you also need to learn a statistical analysis tool. SPSS is a good introduction.
For senior data analysts, the use of analysis tools is a core competency. VBA is a basic necessity. SPSS/SAS/R must be proficient in using at least one of them. Other analysis tools (such as Matlab) depend on the situation.
For data mining engineers...well, just being able to use Excel is enough. The main work needs to be solved by writing code.
3. Programming language
For junior data analysts, if they can write SQL queries, and if necessary, write Hadoop and Hive queries, they are basically OK.
For senior data analysts, in addition to SQL, it is necessary to learn Python, which can be used to obtain and process data with twice the result with half the effort. Of course other programming languages are also possible.
For data mining engineers, they must be familiar with Hadoop, at least one of Python/Java/C, and be able to use Shell... In short, programming languages are definitely the core competency of data mining engineers.
4. Business understanding
It is not an exaggeration to say that business understanding is the basis of all the work of a data analyst, including the data acquisition plan, the selection of indicators, and even the final conclusion. Insights rely on data analysts’ understanding of the business itself.
For junior data analysts, the main job is to extract data and make some simple charts, as well as a small amount of insights and conclusions. It is enough to have a basic understanding of the business.
For senior data analysts, they need to have a deeper understanding of the business and be able to extract effective opinions based on data, which can be helpful to actual business.
For data mining engineers, it is enough to have a basic understanding of the business. The focus still needs to be on exerting one's technical abilities.
Business ability is a must for a good data analyst. If you are already very familiar with a certain industry before, then learning data analysis is a very correct approach. Even if you have just graduated and have no industry experience, you can develop slowly, so there is no need to worry.
4. Logical thinking
This ability was rarely mentioned in my previous articles, so I will talk about it separately this time.
For junior data analysts, logical thinking is mainly reflected in the purpose of every step in the data analysis process, and knowing what means you need to use to achieve what goals.
For senior data analysts, logical thinking is mainly reflected in building a complete and effective analysis framework, understanding the correlation between analysis objects, and knowing the causes and consequences of each indicator change and the impact it will have on the business.
For data mining engineers, logical thinking is not only reflected in business-related analysis work, but also includes algorithmic logic, program logic, etc., so the requirements for logical thinking are also the highest.
5. Data visualization
Data visualization sounds very high-level, but in fact it covers a wide range. Putting data charts in a PPT can also be regarded as data visualization. , so I think this is a generally needed ability.
For junior data analysts, if they can use Excel and PPT to make basic charts and reports, and can clearly display data, they will achieve their goals.
For senior data analysts, they need to explore better data visualization methods, use more effective data visualization tools, and make data visualization content that is simple or complex according to actual needs, but suitable for the audience to watch.
For data mining engineers, it is necessary to understand some data visualization tools, and to make some complex visual charts according to needs, but usually there is no need to consider too many beautification issues.
6. Coordination and communication
For junior data analysts, understanding the business, finding data, and explaining reports all require dealing with people from different departments, so communication skills are very important. important.
For senior data analysts, they need to start leading projects independently or do some cooperation with products. Therefore, in addition to communication skills, they also need some project coordination skills.
For data mining engineers, there is more technical content in communicating with people, relatively less in business aspects, and the requirements for communication and coordination are also relatively low.
7. Quick learning
No matter which direction you are doing data analysis, whether junior or advanced, you need to have the ability to learn quickly, learn business logic, learn industry knowledge, Learn technical tools, learn analysis frameworks... There is endless content to learn in the field of data analysis, and everyone needs to have a heart to learn at all times.
Learning quickly is very important. Only by entering this industry quickly can we seize the opportunity and gain more experience and opportunities. If you have absolutely zero foundation and want to enter the data analysis industry as soon as possible, choosing a professional big data training institution is a good choice. Shorten the learning cycle and improve learning efficiency. Time is money!
For more Python related technical articles, please visit the Python Tutorial column to learn!
The above is the detailed content of What to learn as a python data analyst. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.
