How to implement quick sort in java
The following column java introductory learning will introduce how to implement quick sorting in java. I hope this algorithm sorting can help everyone!
The time complexity of quick sort is not fixed. If in the worst case (selecting the first element as the base element in an originally reverse-sorted array) the speed is relatively slow, reaching O(n^2 ) (an efficiency similar to selection sorting), but if the time complexity is O(nlogn) under ideal circumstances.
The key to implementing quick sorting is to first select a number in the array, and then divide the numbers in the array into two parts. The number smaller than the selected number is moved to the left of the array, and the number smaller than the selected number is moved to the left of the array. The larger number is moved to the right of the array. This reflects the idea of divide and conquer.
Let’s implement this function:
int Partition(int data[],int length,int start,int end) { if(data == nullptr || length <= 0 || start < 0 || end >=length) throw new std::exception("Invalid Parameters"); int index = RandomInRange(start,end); Swap(&data[index],&data[end]); int small = start - 1; for(index = start; index < end; index++) { if(data[index]<data[end]) { ++small; if(small != index) Swap(&data[index],&data[small]); } } ++small; Swap(&data[small],&data[end]); return small; } int RandomInRange(int min, int max) { int random = rand()%(max - min +1) +min; return random; } int Swap(int *num1, int *num2) { int temp = *num1; *num1 = num2; *num2 = temp; }
The function RandomInRange
in the above code is used to generate a random number between start and end, and the function Swap is used to exchange Two numbers.
Below we use recursion to implement quick sorting code:
void QuickSort(int data[], int length, int start, int end) { if(start == end) return; int index = Partition(data, length, start, end); if(index > start) QuickSort(data, length, start, index -1); if(index < end) QuickSort(data, length, index + 1, end); }
The above is the detailed content of How to implement quick sort in java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

Spring Boot simplifies the creation of robust, scalable, and production-ready Java applications, revolutionizing Java development. Its "convention over configuration" approach, inherent to the Spring ecosystem, minimizes manual setup, allo
