Does golang have gc?
GO's garbage collector
Go language garbage collection generally uses the classic mark and sweep algorithm. (Recommended learning: Go )
1.3 Before version, Golang's garbage recovery algorithm was very simple, and then its performance was widely criticized: Go Runtime under certain conditions (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory (memory Exceeding the threshold or periodically (such as 2 minutes), the execution of all tasks is suspended, the mark&sweep operation is performed, and the execution of all tasks is started after the operation is completed.
In scenarios where a lot of memory is used, the go program will have a very obvious stuck phenomenon (Stop The World) when performing garbage collection. In background service processes that require high response speed, this kind of delay is simply intolerable! During this period, many teams at home and abroad that were practicing Go language in production environments had more or less stepped on the pitfalls of gc.
The common method to solve this problem at that time was to control the amount of automatically allocated memory as soon as possible to reduce the gc load, and at the same time, use manual memory management to deal with scenarios that require large amounts of memory and high frequency allocation.
Since version 1.3, the go team has begun to continuously improve and optimize gc performance. When each new version of go is released, gc improvements have become a focus of everyone's attention.
In version 1.3, go runtime separates mark and sweep operations. As before, all task execution is paused and mark is started. After mark is completed, the suspended tasks are restarted immediately, and sweep is performed. Tasks are executed in parallel with other tasks like ordinary coroutine tasks.
If running on a multi-core processor, go will try to run the gc task on a separate core without affecting the execution of the business code. Go team's own statement is that the pause time has been reduced by 50%-70%.
Version 1.4 (the latest stable version) has not made many performance changes to gc. In version 1.4, a lot of runtime code has replaced the native C language implementation with the Go language implementation. A major change brought to gc is that it can achieve accurate gc.
The C language implementation cannot obtain the object information of the memory during gc, so it cannot accurately distinguish between ordinary variables and pointers. It can only treat ordinary variables as pointers. If by chance there are other objects in the space pointed by this ordinary variable, then This object will not be recycled.
The Go language implementation fully knows the type information of the object, and will only traverse the object pointed to by the pointer when marking, thus avoiding the waste of heap memory in C implementation (solve about 10-30%).
In version 1.5, the go team has made major improvements to gc (foreshadowing has been laid in 1.4, such as the introduction of write barrier). The official main goal is to reduce delays. The garbage collector being implemented in go 1.5 is a "non-generational, non-moving, concurrent, three-color mark-and-sweep garbage collector".
The generational algorithm has been mentioned above and is a better garbage collection management strategy. However, its implementation is not considered in version 1.5. The reason I guess is that the steps cannot be too big. Gradually improving, go officials also stated that they will be considered in the gc optimization of version 1.6.
At the same time, the three-color marking method introduced above is introduced. The mark operation of this method can be executed gradually without scanning the entire memory space every time, which can reduce the time of stopping the world.
It can be seen that the garbage collection performance of go has been improving all the way up to version 1.5, but for relatively mature garbage collection systems (such as java jvm and javascript v8), go needs to optimize the path It’s still a long time coming (but I believe the future will be bright~).
The above is the detailed content of Does golang have gc?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

Best practices: Create custom errors using well-defined error types (errors package) Provide more details Log errors appropriately Propagate errors correctly and avoid hiding or suppressing Wrap errors as needed to add context

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

How to address common security issues in the Go framework With the widespread adoption of the Go framework in web development, ensuring its security is crucial. The following is a practical guide to solving common security problems, with sample code: 1. SQL Injection Use prepared statements or parameterized queries to prevent SQL injection attacks. For example: constquery="SELECT*FROMusersWHEREusername=?"stmt,err:=db.Prepare(query)iferr!=nil{//Handleerror}err=stmt.QueryR
