What is the use of golang reflection? The following article will introduce you to golang reflection. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to everyone.
#golang (go) is a procedural programming language that can be used for fast machine code compilation. It is a statically typed compiled language. It provides a concurrency mechanism that makes it easy to develop multi-core and networked machine-level programs. It is a fast, dynamically typed and interpreted language; it provides support for interfaces and type embedding.
Basic understanding
In Go language, most of the time the value/type/function is very straightforward, if you want, define one. You want a Struct
type Foo struct { A int B string }
You want a value, you define it
var x Foo
You want a function, you define it
func DoSomething(f Foo) { fmt.Println(f.A, f.B) }
But sometimes, you need Do something that can only be determined at runtime, such as getting some dictionary data from a file or the network. Or maybe you want to get some different types of data. In this case, reflection
comes in handy. Reflection allows you to have the following capabilities:
Check type at runtime
Check/modify/at runtime Create values/functions/structures
In general, go's reflection
revolves around three conceptsTypes
, Kinds
, Values
. All operations on reflection are in the reflect
package
Reflection’s Power
Type’s Power
First, let’s look at how to obtain the value type through reflection.
varType := reflect.TypeOf(var)
From the reflection interface, we can see that there are a lot of functions waiting for us to use. You can see it in the comments. The reflection package assumes that we know what we are going to do. For example, varType.Elem() will panic. Because Elem() only has this method for Array, Chan, Map, Ptr, or Slice. These types only have this method. Please see the test code for details. You can see examples of all reflect functions by running the following code
package main import ( "fmt" "reflect" ) type FooIF interface { DoSomething() DoSomethingWithArg(a string) DoSomethingWithUnCertenArg(a ... string) } type Foo struct { A int B string C struct { C1 int } } func (f *Foo) DoSomething() { fmt.Println(f.A, f.B) } func (f *Foo) DoSomethingWithArg(a string) { fmt.Println(f.A, f.B, a) } func (f *Foo) DoSomethingWithUnCertenArg(a ... string) { fmt.Println(f.A, f.B, a[0]) } func (f *Foo) returnOneResult() int { return 2 } func main() { var simpleObj Foo var pointer2obj = &simpleObj var simpleIntArray = [3]int{1, 2, 3} var simpleMap = map[string]string{ "a": "b", } var simpleChan = make(chan int, 1) var x uint64 var y uint32 varType := reflect.TypeOf(simpleObj) varPointerType := reflect.TypeOf(pointer2obj) // 对齐之后要多少容量 fmt.Println("Align: ", varType.Align()) // 作为结构体的`field`要对其之后要多少容量 fmt.Println("FieldAlign: ", varType.FieldAlign()) // 叫啥 fmt.Println("Name: ", varType.Name()) // 绝对引入路径 fmt.Println("PkgPath: ", varType.PkgPath()) // 实际上用了多少内存 fmt.Println("Size: ", varType.Size()) // 到底啥类型的 fmt.Println("Kind: ", varType.Kind()) // 有多少函数 fmt.Println("NumMethod: ", varPointerType.NumMethod()) // 通过名字获取一个函数 m, success := varPointerType.MethodByName("DoSomethingWithArg") if success { m.Func.Call([]reflect.Value{ reflect.ValueOf(pointer2obj), reflect.ValueOf("sad"), }) } // 通过索引获取函数 m = varPointerType.Method(1) m.Func.Call([]reflect.Value{ reflect.ValueOf(pointer2obj), reflect.ValueOf("sad2"), }) // 是否实现了某个接口 fmt.Println("Implements:", varPointerType.Implements(reflect.TypeOf((*FooIF)(nil)).Elem())) // 看看指针多少bit fmt.Println("Bits: ", reflect.TypeOf(x).Bits()) // 查看array, chan, map, ptr, slice的元素类型 fmt.Println("Elem: ", reflect.TypeOf(simpleIntArray).Elem().Kind()) // 查看Array长度 fmt.Println("Len: ", reflect.TypeOf(simpleIntArray).Len()) // 查看结构体field fmt.Println("Field", varType.Field(1)) // 查看结构体field fmt.Println("FieldByIndex", varType.FieldByIndex([]int{2, 0})) // 查看结构提field fi, success2 := varType.FieldByName("A") if success2 { fmt.Println("FieldByName", fi) } // 查看结构体field fi, success2 = varType.FieldByNameFunc(func(fieldName string) bool { return fieldName == "A" }) if success2 { fmt.Println("FieldByName", fi) } // 查看结构体数量 fmt.Println("NumField", varType.NumField()) // 查看map的key类型 fmt.Println("Key: ", reflect.TypeOf(simpleMap).Key().Name()) // 查看函数有多少个参数 fmt.Println("NumIn: ", reflect.TypeOf(pointer2obj.DoSomethingWithUnCertenArg).NumIn()) // 查看函数参数的类型 fmt.Println("In: ", reflect.TypeOf(pointer2obj.DoSomethingWithUnCertenArg).In(0)) // 查看最后一个参数,是否解构了 fmt.Println("IsVariadic: ", reflect.TypeOf(pointer2obj.DoSomethingWithUnCertenArg).IsVariadic()) // 查看函数有多少输出 fmt.Println("NumOut: ", reflect.TypeOf(pointer2obj.DoSomethingWithUnCertenArg).NumOut()) // 查看函数输出的类型 fmt.Println("Out: ", reflect.TypeOf(pointer2obj.returnOneResult).Out(0)) // 查看通道的方向, 3双向。 fmt.Println("ChanDir: ", int(reflect.TypeOf(simpleChan).ChanDir())) // 查看该类型是否可以比较。不能比较的slice, map, func fmt.Println("Comparable: ", varPointerType.Comparable()) // 查看类型是否可以转化成另外一种类型 fmt.Println("ConvertibleTo: ", varPointerType.ConvertibleTo(reflect.TypeOf("a"))) // 该类型的值是否可以另外一个类型 fmt.Println("AssignableTo: ", reflect.TypeOf(x).AssignableTo(reflect.TypeOf(y))) }
Value's Power
In addition to checking the type of a variable, you can read/write/create a new one through reflection value. But first get the reflection value type
refVal := reflect.ValueOf(var)
if you want to modify the value of the variable. You need to obtain the reflection pointer pointing to the variable. The specific reason will be explained later
refPtrVal := reflect.ValueOf(&var)
Of course you have reflect.Value, and you can easily obtain reflect.Type through the Type() method. If you want to change the value of the variable, use
refPtrVal.Elem().Set(newRefValue)
Of course the parameters of the Set method must also be reflect.Value
If you want to create a new value, use the following code
newPtrVal := reflect.New(varType)
Then use Elem().Set() to initialize the value. Of course there are a bunch of different methods for different values. I won’t write it down here. Let’s focus on the following official example
package main import ( "fmt" "reflect" ) func main() { // swap is the implementation passed to MakeFunc. // It must work in terms of reflect.Values so that it is possible // to write code without knowing beforehand what the types // will be. swap := func(in []reflect.Value) []reflect.Value { return []reflect.Value{in[1], in[0]} } // makeSwap expects fptr to be a pointer to a nil function. // It sets that pointer to a new function created with MakeFunc. // When the function is invoked, reflect turns the arguments // into Values, calls swap, and then turns swap's result slice // into the values returned by the new function. makeSwap := func(fptr interface{}) { // fptr is a pointer to a function. // Obtain the function value itself (likely nil) as a reflect.Value // so that we can query its type and then set the value. fn := reflect.ValueOf(fptr).Elem() // Make a function of the right type. v := reflect.MakeFunc(fn.Type(), swap) // Assign it to the value fn represents. fn.Set(v) } // Make and call a swap function for ints. var intSwap func(int, int) (int, int) makeSwap(&intSwap) fmt.Println(intSwap(0, 1)) // Make and call a swap function for float64s. var floatSwap func(float64, float64) (float64, float64) makeSwap(&floatSwap) fmt.Println(floatSwap(2.72, 3.14)) }
Principle
Recognize type and interface
Go is a statically typed language. Each variable has a static type, such as int, float. What is a static type? My understanding is a binary block of a certain length and explanation. For example, the same binary block 00000001 means true in the bool type. The explanation in the int type is 1. Let's take a look at the following simplest example
type MyInt int var i int var j MyInt
i,j are represented by the underlying type int in the memory, but in the actual coding process, They are not of the same type when compiled, and you cannot directly assign the value of i to j. Isn't it a little strange? When you execute it, the compiler will tell you that you cannot assign a value of type MyInt to a value of type int. This type is neither a class nor a Python type.
Interface is a special type that represents a collection of methods. An interface value can store any certain value as long as the value implements the interface method. interface{} is sometimes similar to Java's Object. In fact, interface consists of two parts, the actual value and the specific type of the value. This can also explain why the following code is different from other languages. For details on the principles of interface, please refer to go data structures: interfaces.
package main import ( "fmt" ) type A interface { x(param int) } type B interface { y(param int) } type AB struct { } func (ab *AB) x(param int) { fmt.Printf("%p", ab) fmt.Println(param) } func (ab *AB) y(param int) { fmt.Printf("%p", ab) fmt.Println(param) } func printX(a A){ fmt.Printf("%p", a) a.x(2) } func printY(b B){ fmt.Printf("%p", b) b.y(3) } func main() { var ab = new(AB) printX(ab) printY(ab) var aInfImpl A var bInfImpl B aInfImpl = new(AB) //bInfImpl = aInfImpl 会报错 bInfImpl = aInfImpl.(B) bInfImpl.y(2) }
Golang’s three reflection theorems
Split an interface value into a reflection object
Reflection is only used to check the interface value (Value, Type). As mentioned in the previous chapter, the two methods ValueOf and TypeOf. Through ValueOf, we can easily get Type
package main import ( "fmt" "reflect" ) func main() { var x float64 = 3.4 fmt.Println("type:", reflect.TypeOf(x)) }
. This code outputs
type: float64
. Then the question becomes, where is the interface? Just declare a float64 variable. Where does the interface come from. Yes, the answer is hidden in the TypeOf parameter
func TypeOf(i interface{}) Type
When we call reflect.TypeOf(x), x is first stored in an empty interface. Then it is passed to the function execution stack as a parameter. ** reflect.TypeOf unwraps the pair of this interface and recovers the type information **
Combines the reflection object into an interface value
就像镜面反射一样,go的反射是可逆的。给我一个reflect.Value。我们能够恢复出一个interface的值。事实上,以下函数干的事情就是将Value和Type组狠起来塞到 interface里面去。所以我们可以
y := v.Interface().(float64) // y will have type float64. fmt.Println(y)
接下来就是见证奇迹的时刻。fmt.Println和fmt.Printf的参数都是interface{}。我们真正都不需要将上面例子的y转化成明确的float64。我就可以去打印他比如
fmt.Println(v.Interface())
甚至我们的interface藏着的那个type是float64。我们可以直接用占位符来打印
fmt.Println("Value is %7.le\n", v.Interface())
再重复一边,没有必要将v.Interface()的类型强转到float64;这个空的interface{}包含了concrete type。函数调用会恢复出来
要改变一个反射对象,其值必须是可设置的
第三条比较让你比较困惑。不过如果我们理解了第一条,那么这条其实非常好理解。先看一下下面这个例子
var x float64 = 3.4 v := reflect.ValueOf(x) v.SetFloat(7.1) // Error: will panic.
如果执行这段代码,你会发现出现panic以下信息
panic: reflect.Value.SetFloat using unaddressable value
可设置性是一个好东西,但不是所有reflect.Value都有他...可以通过CanSet 函数来获取是否可设置
var x float64 = 3.4 v := reflect.ValueOf(x) fmt.Println("settability of v:", v.CanSet())
那么到底为什么要有一个可设置性呢?可寻址才可设置,我们在用reflect.ValueOf时候,实际上是函数传值。获取x的反射对象,实际上是另外一个float64的内存的反射对象。这个时候我们再去设置该反射对象的值,没有意义。这段内存并不是你申明的那个x。
推荐学习:Golang教程
The above is the detailed content of What is the use of golang reflection?. For more information, please follow other related articles on the PHP Chinese website!