Introduction to Pyzmq
【Related learning recommendations: python tutorial】
Introduction to Pyzmq
ZMQ (hereinafter ZeroMQ referred to as ZMQ) is a simple and easy-to-use transport layer, a socket library like a framework, which makes Socket programming simpler, more concise and higher-performance .
is a message processing queue library that can elastically scale between multiple threads, cores and host boxes. The stated goal of ZMQ is to "become part of the standard network protocol stack and later enter the Linux kernel."
ZMQ makes writing high-performance network applications extremely easy and fun.
ZeroMQ is not a socket encapsulation and cannot be used to implement existing network protocols.
It has its own mode, which is different from the lower-level point-to-point communication mode.
It has a higher level protocol than the tcp protocol. (Of course ZeroMQ is not necessarily based on the TCP protocol, it can also be used for inter-process and intra-process communication)
zeromq
is not similar to rabbitmq
message queue, it actually Only one message queue component and one library.
zeromq.org/languages/python/ | |
---|---|
github.com/zeromq/pyzmq | |
zeromq.github.io/pyzmq/ | |
zguide.zeromq.org/py:all |
Several modes of Pyzmq
1. Request-Reply mode (rep and req)
Messages are bidirectional, coming and going. For messages requested by the req end, the rep end must reply to the req end2. Subscription publishing mode (pub and sub)
Messages are one-way, there is no return. The publishing side can publish messages on specific topics, and the subscribing side can subscribe to topics that it likes. The subscribing side will only receive topics that it has subscribed to. The publisher publishes a message that can be received by multiple subscribers.3. Push pull mode
Messages are one-way, and there is no return. For any push message, only one pull end will receive the message.The subsequent proxy mode and routing mode are all extensions or mutations of the three basic modes.1. Request-Reply mode (request response model):
After the client requests, the server must respond by the client Initiate a request and wait for the server to respond to the request. From the client side, there must be a sending and receiving pair; On the contrary, from the server side, there must be a sending and receiving pair. Both the server and the client can be in 1:N model. Usually 1 is considered the server and N is the client. ZMQ can support the routing function very well (the component that implements the routing function is called Device), extending 1:N to N:M (only a few routing nodes need to be added). From this model, the lower-level endpoint address is hidden from the upper layer. The response address is implicit in every request, and the application does not care about it
sever.py import zmq import sys
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:5555")
while True:
try:
print("wait for client ...")
message = socket.recv()
print("message from client:", message.decode('utf-8'))
socket.send(message)
except Exception as e:
print('异常:',e)
sys.exit()
Copy after login
Client:#client.py
import zmq import sys context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:5555") while True: try: print("wait for client ...") message = socket.recv() print("message from client:", message.decode('utf-8')) socket.send(message) except Exception as e: print('异常:',e) sys.exit()
import zmq import sys context = zmq.Context() print("Connecting to server...") socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:5555") while True: input1 = input("请输入内容:").strip() if input1 == 'b': sys.exit() socket.send(input1.encode('utf-8')) message = socket.recv() print("Received reply: ", message.decode('utf-8'))
2.Publish-Subscribe mode (publish-subscribe model):
Broadcast All clients, without queue cache, disconnect data will be lost forever. The client can perform data filtering.Server
server.pyimport zmq import time import sys context = zmq.Context() socket = context.socket(zmq.PUB) socket.bind("tcp://*:5555") while True: msg = input("请输入要发布的信息:").strip() if msg == 'b': sys.exit() socket.send(msg.encode('utf-8')) time.sleep(1)
import zmq context = zmq.Context() socket = context.socket(zmq.SUB) socket.connect("tcp://localhost:5555") socket.setsockopt(zmq.SUBSCRIBE,''.encode('utf-8')) # 接收所有消息 while True: response = socket.recv().decode('utf-8'); print("response: %s" % response)
import zmq context = zmq.Context() socket = context.socket(zmq.SUB) socket.connect("tcp://localhost:5555") socket.setsockopt(zmq.SUBSCRIBE,'123'.encode('utf-8')) # 消息过滤 只接受123开头的信息 while True: response = socket.recv().decode('utf-8'); print("response: %s" % response)
3.Parallel Pipeline mode (pipeline model):
consists of three parts, push for data push, Work performs data caching, and pull performs data competition acquisition processing. Different from Publish-Subscribe, there is a data cache and processing load. When the connection is disconnected, the data will not be lost, and the data will continue to be sent to the peer after reconnection.import zmq import time context = zmq.Context() socket = context.socket(zmq.PUSH) socket.bind("tcp://*:5557") while True: msg = input("请输入要发布的信息:").strip() socket.send(msg.encode('utf-8')) print("已发送") time.sleep(1)
import zmq context = zmq.Context() receive = context.socket(zmq.PULL) receive.connect('tcp://127.0.0.1:5557') sender = context.socket(zmq.PUSH) sender.connect('tcp://127.0.0.1:5558') while True: data = receive.recv() print("正在转发...") sender.send(data)
import zmq context = zmq.Context() socket = context.socket(zmq.PULL) socket.bind("tcp://*:5558") while True: response = socket.recv().decode('utf-8') print("response: %s" % response)
The above is the detailed content of Introduction to Pyzmq. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.
