How to implement asynchronous programming patterns in JavaScript
Methods to implement asynchronous programming mode in JavaScript: 1. Callback function, which is the most basic method of asynchronous programming; 2. Event listening; 3. Publishing or subscribing; 4. Promises object.
The operating environment of this tutorial: Windows 7 system, JavaScript version 1.8.5, DELL G3 computer.
Methods to implement asynchronous programming mode in JavaScript:
1. Callback function
This is the most basic of asynchronous programming method.
Suppose there are two functions f1 and f2, and the latter waits for the execution result of the former.
The code is as follows:
f1(); f2();
If f1 is a time-consuming task, you can consider rewriting f1 and writing f2 as the callback function of f1.
The code is as follows:
function f1(callback){ setTimeout(function () { // f1的任务代码 callback(); }, 1000); }
The execution code becomes the following:
The code is as follows:
f1(f2);
In this way, we change the synchronization operation into It has become an asynchronous operation. F1 will not block the running of the program. It is equivalent to executing the main logic of the program first and postponing the execution of time-consuming operations.
The advantage of the callback function is that it is simple, easy to understand and deploy. The disadvantage is that it is not conducive to reading and maintaining the code. The various parts are highly coupled (Coupling), the process will be very confusing, and each task can only be specified A callback function.
2. Event monitoring
Another way of thinking is to use the event-driven model. The execution of a task does not depend on the order of the code, but on whether an event occurs.
Let’s take f1 and f2 as an example. First, bind an event to f1 (jQuery is used here).
The code is as follows:
f1.on('done', f2);
The above line of code means that when the done event occurs in f1, f2 will be executed. Then, rewrite f1:
The code is as follows:
function f1(){ setTimeout(function () { // f1的任务代码 f1.trigger('done'); }, 1000); }
f1.trigger('done') means that after the execution is completed, the done event will be triggered immediately, thus starting to execute f2.
The advantage of this method is that it is relatively easy to understand, can bind multiple events, each event can specify multiple callback functions, and can be "decoupled" (Decoupling), which is conducive to modularization. The disadvantage is that the entire program has to become event-driven, and the running process will become very unclear.
3. Publish/Subscribe
The "event" in the previous section can be understood as a "signal".
We assume that there is a "signal center". When a task is completed, it "publish" a signal to the signal center. Other tasks can "subscribe" to the signal center. So you know when you can start executing. This is called the "publish-subscribe pattern" (publish-subscribe pattern), also known as the "observer pattern" (observer pattern).
There are many implementations of this pattern. The one below is Ben Alman’s Tiny Pub/Sub, which is a plug-in for jQuery.
First, f2 subscribes to the "done" signal from "Signal Center" jQuery.
The code is as follows:
jQuery.subscribe("done", f2);
Then, f1 is rewritten as follows:
The code is as follows:
function f1(){ setTimeout(function () { // f1的任务代码 jQuery.publish("done"); }, 1000); }
jQuery.publish("done") means , after the execution of f1 is completed, the "done" signal is released to the "signal center" jQuery, thereby triggering the execution of f2.
In addition, after f2 completes execution, you can also unsubscribe.
The code is as follows:
jQuery.unsubscribe("done", f2);
The nature of this method is similar to "event listening", but it is obviously better than the latter. Because we can monitor the operation of the program by looking at the "Message Center" to see how many signals exist and how many subscribers each signal has.
4. Promises object
The Promises object is a specification proposed by the CommonJS working group to provide a unified interface for asynchronous programming.
Simply put, the idea is that each asynchronous task returns a Promise object, which has a then method that allows a callback function to be specified. For example, the callback function f2 of f1 can be written as:
The code is as follows:
f1().then(f2);
f1 needs to be rewritten as follows (the jQuery implementation is used here):
The code is as follows :
function f1(){ var dfd = $.Deferred(); setTimeout(function () { // f1的任务代码 dfd.resolve(); }, 500); return dfd.promise; }
The advantage of writing this way is that the callback function becomes a chain writing method, the program flow can be seen clearly, and there is a complete set of supporting methods that can realize many powerful functions.
For example, specify multiple callback functions:
The code is as follows:
f1().then(f2).then(f3);
Another example, specify the callback function when an error occurs:
The code is as follows:
f1().then(f2).fail(f3);
Moreover, it has an advantage that the previous three methods do not have: if a task has been completed and a callback function is added, the callback function will be executed immediately. So you don't have to worry about missing an event or signal. The disadvantage of this method is that it is relatively difficult to write and understand.
Related free learning recommendations: javascript video tutorial
The above is the detailed content of How to implement asynchronous programming patterns in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Usage: In JavaScript, the insertBefore() method is used to insert a new node in the DOM tree. This method requires two parameters: the new node to be inserted and the reference node (that is, the node where the new node will be inserted).

Introduction to the method of obtaining HTTP status code in JavaScript: In front-end development, we often need to deal with the interaction with the back-end interface, and HTTP status code is a very important part of it. Understanding and obtaining HTTP status codes helps us better handle the data returned by the interface. This article will introduce how to use JavaScript to obtain HTTP status codes and provide specific code examples. 1. What is HTTP status code? HTTP status code means that when the browser initiates a request to the server, the service
