Let's talk to you about the rich index types in MongoDB
This article will take you to understand MongoDB and introduce the rich index types in MongoDB. I hope it will be helpful to everyone! The functions of
MongoDB
's index and MySql
's index are basically similar in function and optimization principles, MySql
Index types can basically be distinguished as:
- Single key index - joint index
- Primary key index (clustered index) -Non-primary key index (non-clustered index)
In addition to these basic classifications in MongoDB
, there are also some special index types, such as: array index | sparse index | geospatial index | TTL index, etc.
For the convenience of testing below, we use the script to insert the following data
for(var i = 0;i < 100000;i++){ db.users.insertOne({ username: "user"+i, age: Math.random() * 100, sex: i % 2, phone: 18468150001+i }); }
Single key index
Single key index means that there is only one indexed field, which is the most basic index. Method.
Use the username
field in the collection to create a single key index. MongoDB
will automatically name this index username_1
db.users.createIndex({username:1}) 'username_1'
After creating the index, check the query plan using the username
field. stage
is IXSCAN
, which means index scanning is used
db.users.find({username:"user40001"}).explain() { queryPlanner: { winningPlan: { ...... stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... } } rejectedPlans: [] , }, ...... ok: 1 }
Among the principles of index optimization, a very important principle is that the index should be built on a field with a high cardinality. The so-called cardinality is the number of non-repeating values in a field, that is, when we create users
If the age value that appears during collection is 0-99
, then the age
field will have 100 unique values, that is, the base of the age
field is 100. The sex
field will only have the two values 0 | 1
, that is, the base of the sex
field is 2, which is a fairly low base. In this case, the index efficiency is not high and will lead to index failure.
Let's build a sex
field index to query the execution plan. You will find that the query is done Full table scan without related index.
db.users.createIndex({sex:1}) 'sex_1' db.users.find({sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'COLLSCAN', filter: { sex: { '$eq': 1 } }, direction: 'forward' }, rejectedPlans: [] }, ...... ok: 1 }
Joint index
Joint index means there will be multiple fields on the index. Use age## below. # and
sex create an index with two fields
db.users.createIndex({age:1,sex:1}) 'age_1_sex_1'
db.users.find({age:23,sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { age: 1, sex: 1 }, indexName: 'age_1_sex_1', ....... indexBounds: { age: [ '[23, 23]' ], sex: [ '[1, 1]' ] } } }, rejectedPlans: [], }, ...... ok: 1 }
Array index
Array index is to create an index on the array field, also called a multi-valued index. In order to test, the data in theusers collection will be added to some array fields below.
db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","篮球","rap"]}}) ......
isMultiKey: true means that the index used is a multi-valued index.
db.users.createIndex({hobby:1}) 'hobby_1' db.users.find({hobby:{$elemMatch:{$eq:"钓鱼"}}}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { hobby: { '$elemMatch': { '$eq': '钓鱼' } } }, inputStage: { stage: 'IXSCAN', keyPattern: { hobby: 1 }, indexName: 'hobby_1', isMultiKey: true, multiKeyPaths: { hobby: [ 'hobby' ] }, ...... indexBounds: { hobby: [ '["钓鱼", "钓鱼"]' ] } } }, rejectedPlans: [] }, ...... ok: 1 }
size of the
hobby array of each document is 10, then the
hobby array index of this collection is The number of entries will be 10 times that of the ordinary index.
Joint array index
A joint array index is a joint index containing array fields. This type of index does not support one index. Contains multiple array fields, that is, there can be at most one array field in an index. This is to avoid the explosive growth of index entries. Suppose there are two array fields in an index, then the number of index entries will be n* of a normal index. m timesGeographic spatial index
Add some geographical information to the originalusers collection
for(var i = 0;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ location:{ type: "Point", coordinates: [100+Math.random() * 4,40+Math.random() * 3] } } }); }
db.users.createIndex({location:"2dsphere"}) 'location_2dsphere' //查询500米内的人 db.users.find({ location:{ $near:{ $geometry:{type:"Point",coordinates:[102,41.5]}, $maxDistance:500 } } })
type of the geographical spatial index has many containing
Ponit(point) |
LineString(line) |
Polygon (Polygon)etc
TTL index
The full spelling of TTL istime to live, which is mainly used for automatic deletion of expired data , to use this kind of index, you need to declare a time type field in the document, and then when creating a TTL index for this field, you also need to set an
expireAfterSecondsThe expiration time unit is seconds, after the creation is completed
MongoDBThe data in the collection will be checked regularly. When it appears:

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solutions to resolve Navicat expiration issues include: renew the license; uninstall and reinstall; disable automatic updates; use Navicat Premium Essentials free version; contact Navicat customer support.

To connect to MongoDB using Navicat, you need to: Install Navicat Create a MongoDB connection: a. Enter the connection name, host address and port b. Enter the authentication information (if required) Add an SSL certificate (if required) Verify the connection Save the connection

.NET 4.0 is used to create a variety of applications and it provides application developers with rich features including: object-oriented programming, flexibility, powerful architecture, cloud computing integration, performance optimization, extensive libraries, security, Scalability, data access, and mobile development support.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

In a serverless architecture, Java functions can be integrated with the database to access and manipulate data in the database. Key steps include: creating Java functions, configuring environment variables, deploying functions, and testing functions. By following these steps, developers can build complex applications that seamlessly access data stored in databases.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

This article describes how to build a highly available MongoDB database on a Debian system. We will explore multiple ways to ensure data security and services continue to operate. Key strategy: ReplicaSet: ReplicaSet: Use replicasets to achieve data redundancy and automatic failover. When a master node fails, the replica set will automatically elect a new master node to ensure the continuous availability of the service. Data backup and recovery: Regularly use the mongodump command to backup the database and formulate effective recovery strategies to deal with the risk of data loss. Monitoring and Alarms: Deploy monitoring tools (such as Prometheus, Grafana) to monitor the running status of MongoDB in real time, and
