


Let's analyze Python queue-related applications and exercises together
This article brings you relevant knowledge about python, which mainly introduces queue-related application exercises, including how to use two stacks to implement a queue, and how to use two The queue implements a stack, determines the continuity of elements in the stack, etc. I hope it will be helpful to everyone.
Recommended learning: python tutorial
0. Learning objectives
We have learned the related concepts of queues and its implementation, and also learned about the wide application of queues in practical problems. The main purpose of this section is to further deepen the understanding of queues through queue-related exercises, and at the same time, be able to use queues to reduce the time complexity of solutions to some complex problems. .
1. Use two stacks to implement a queue
[Question] Given two stacks, implement a queue using only the basic operations of the stack.
[Ideas] The key to solving this problem lies in the reversal feature of the stack. A series of elements pushed onto the stack will be returned in the reverse order when popped off the stack. Therefore, using two stacks can achieve the return of elements in the same order (the reversed sequence of elements will be reversed again to get the original order). The specific operation is shown in the figure below:
[Algorithm]
Enqueue
enqueue
:
Push elements onto the stackstack_1
Dequeuedequeue
:
If the stackstack_2
is not empty:
stack_2
Pop the top element from the stack
Otherwise:
Pop all elements fromstack_1
and push them intostack_2
stack_2
Pop the top element from the stack
[code]
1 2 3 4 5 6 7 8 9 10 11 |
|
[Time and space complexity] The time complexity of entering the queue is O(1), if the stack stack_2
is not empty, then the time complexity of dequeuing is O( 1), if the stack stack_2
is empty, you need to remove the elements from stack_1
is transferred to stack_2
, but since the number of elements transferred in stack_2
is equal to the number of elements dequeued, the amortized time complexity of dequeuing is O(1) .
2. Implement a stack using two queues
[Question] Given two queues, implement a stack using only the basic operations of the queue.
[Idea] Since the queue does not have the feature of reversing the order, the order in which the elements are enqueued is the order in which the elements are dequeued. Therefore, if you want to get the last element enqueued, you need to first dequeue all previous elements. Therefore, in order to use two queues to implement the stack, we need to use one of the queues store_queue
to store elements, and the other queue temp_queue
to save the temporary output in order to obtain the last element. Team elements. push
The operation enqueues the given element into the storage queue store_queue
; the pop
operation first removes the last element from the storage queue store_queue
All elements outside the queue are transferred to the temporary queue temp_queue
, and then the last element in the storage queue store_queue
is dequeued and returned. The specific operation is shown in the figure below:
#[Algorithm]
算法运行过程需要始终保持其中一个队列为空,用作临时队列
入栈push
:在非空队列中插入元素data
。
若队列queue_1
为空:
将data
插入 队列queue_2
中
否则:
将data
插入 队列queue_1
中
出栈pop
:将队列中的前n−1 个元素插入另一队列,删除并返回最后一个元素
若队列queue_1
不为空:
将队列queue_1
的前n−1 个元素插入queue_2
,然后queue_1
的最后一个元素出队并返回
若队列queue_2
不为空:
将队列queue_2
的前 n−1 个元素插入queue_1
,然后queue_2
的最后一个元素出队并返回
[代码]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
[时空复杂度] push
操作的时间复杂度为O(1),由于 pop
操作时,都需要将所有元素从一个队列转移到另一队列,因此时间复杂度O(n)。
3. 栈中元素连续性判断
[问题] 给定一栈 stack1
,栈中元素均为整数,判断栈中每对连续的数字是否为连续整数(如果栈有奇数个元素,则排除栈顶元素)。例如,输入栈 [1, 2, 5, 6, -5, -4, 11, 10, 55]
,输入为 True
,因为排除栈顶元素 55
后,(1, 2)
、(5, 6)
、(-5, -4)
、(11, 10)
均为连续整数。
[思路] 由于栈中可能存在奇数个元素,因此为了正确判断,首次需要将栈中元素反转,栈顶元素变为栈底,然后依次出栈,进行判断。
[算法]
栈
stack
中所有元素依次出栈,并插入队列queue
中
队列queue
中所有元素出队,并入栈stack
while 栈stack
不为空:
栈顶元素e1
出栈,并插入队列queue
中
如果栈stack
不为空:
栈顶元素e2
出栈,并插入队列queue
中
如果|e1-e2|!=1
:
返回False
,跳出循环
队列queue
中所有元素出队,并入栈stack
[代码]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
[时空复杂度] 时间复杂度为 O(n),空间复杂度为 O(n)。
4. Lets analyze Python queue-related applications and exercises together
[问题] 给定一个整数队列 queue
,将队列的前半部分与队列的后半部分交错来重新排列元素。例如输入队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9]
,则输出应为 [1, 6, 2, 7, 3, 8, 4, 9, 5]
。
[思路] 通过获取队列的前半部分,然后利用栈的反转特性,可以实现重排操作,如下图所示:
[算法]
如果队列
queue
中的元素数为偶数:
half=queue.size//2
否则:
half=queue.size//2+1
1. 将队列queue
的前半部分元素依次出队并入栈stack
2. 栈stack
中元素出栈并入队queue
3. 将队列queue
中在步骤 1
中未出队的另一部分元素依次出队并插入队尾
4. 将队列queue
的前半部分元素依次出队并入栈stack
5. 将栈stack
和队列queue
中的元素交替弹出并入队
6. 如果栈stack
非空:
栈stack
中元素出栈并入队
[代码]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)。
5. 反转队列中前 m 个元素的顺序
[问题] 给定一个整数 m
和一个整数队列 queue
,反转队列中前 k 个元素的顺序,而其他元素保持不变。如 m=5
,队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9]
,算法输出为 [5, 4, 3, 2, 1, 6, 7, 8, 9]
。
[思路] 结合 [问题4] 我们可以发现,此题就是 [问题4] 的前 3
步,如下图所示:
[算法]
1. 将队列
queue
的前m
个元素依次出队并入栈stack
2. 栈stack
中元素出栈并入队queue
3. 将队列queue
中在步骤 1
中未出队的另一部分元素依次出队并插入队尾
[代码]
1 2 3 4 5 6 7 8 9 10 |
|
[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)。
Recommended learning: python tutorial
The above is the detailed content of Let's analyze Python queue-related applications and exercises together. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.
