A closer look at Python decorator functions
This article brings you relevant knowledge about python, which mainly organizes issues related to decorator functions, including the formation process, essence and function, advancement and optimization of decorators Let’s take a look at the content below. I hope it will be helpful to everyone.
Recommended learning: python
If I write a function f
def f(): print('hello')
, I want to know this paragraph The time required for function execution is easy to handle. I just need to change the code to the following
import time def f(): start = time.time() #获取程序执行开始的时间 print('hello') end = time.time() #获取程序执行结束的时间 print(end - start) #得出函数f执行所要时间 f()
But then I wrote countless functions f2, f3...fn, and I want to know how long each function takes to execute. time, wouldn’t it be very annoying if we change it as above? Still not possible, because it would be too much trouble. then what should we do? So I had an idea and wrote a timer function. . .
import time def timer(func): start = time.time() func() print(time.time() - start) def f(): print('hello') def f2(): print('xorld') timer(f) timer(f2)
Doesn’t this look much simpler? No matter how many functions we write, we can call this timing function to calculate the execution time of the function
But if I just want to call this function in the original way f1(), f2(), fn(), The function can also add the function of calculating time while the original execution output result remains unchanged. Instead of calling timer(f), timer(f2) can calculate time. What should we do?
You will know how to solve this problem after reading the decorator function below
1. Decorator - Formation process
The following is the solution A simple version of the code for the above question:
import time def f(): print('hello') def timer(func): def inner(): start = time.time() func() print(time.time() - start) return inner f = timer(f) f()
Still with this sentence, I just want to call this function in the original way f1(), f2(), fn(). The function outputs the result when it is originally executed. Under the premise of changing, the function of calculating time can be added, but I still have to write f = timer(f) in this string of code before the function f is executed. Does it feel annoying? Python developers also find it annoying, so Python developers provide us with a syntax sugar to solve this problem!
2. Decorator - First introduction to syntactic sugar
Use @timmer instead of f = timer(f), this is a sentence of syntactic sugar.
import time def timer(func): def inner(): start = time.time() func() print(time.time() - start) return inner @timer #==> 写着这句话就相当于执行了f = timer(f) def f(): print('hello') f()
3. Decorator - Essence and Function
1. Essence
The essence of a decorator is a closure function
2. FunctionExpand the original function function without modifying the original function and its calling method
4. Decoration Decorator - decorator with parameters and return value- 1. Decoration function with one parameter
import time def timer(func): def inner(a): start = time.time() func(a) print(time.time() - start) return inner @timer def f(a): print(a) f('hello')
- 2. Decorate multiple functions with different parameters but no return value
import time def timer(func): def inner(*args,**kwargs): start = time.time() re = func(*args,**kwargs) print(time.time() - start) return re return inner @timer #==> func1 = timer(func1) def func1(a,b): print('in func1') @timer #==> func2 = timer(func2) def func2(a): print('in func2 and get a:%s'%(a)) return 'fun2 over' func1('aaaaaa','bbbbbb') print(func2('aaaaaa')) 输出结果: in func1 0.0 in func2 and get a:aaaaaa 0.0 fun2 over
- 3. Decorate multiple functions with different parameters and return values
import time def timer(func): def inner(*args,**kwargs): start = time.time() re = func(*args,**kwargs) print(time.time() - start) return re return inner @timer #==> func2 = timer(func2) def func2(a): print('in func2 and get a:%s'%(a)) return 'fun2 over' func2('aaaaaa') print(func2('aaaaaa')) 输出结果: in func2 and get a:aaaaaa 0.0 in func2 and get a:aaaaaa 0.0 fun2 over
- 4. Multiple decorators decorate the same function
ef wrapper1(func): #func ----- f def inner1(): print('wrapper1 ,before func') func() print('wrapper1 ,after func') return inner1 def wrapper2(func): def inner2(): print('wrapper2 ,before func') func() print('wrapper2 ,after func') return inner2 @wrapper2 #f = wrapper2(f) ----->> wrapper2(inner1) == inner2 @wrapper1 #f = wrapper1(f) = inner def f(): print('in f') f() #===>>inner2 #多个装饰器装饰同一个函数 输出结果: wrapper2 ,before func wrapper1 ,before func in f wrapper1 ,after func wrapper2 ,after func
5. Decorator - Decorator advancement and optimization
- 1. Decorator with parameters
''' 为了使装饰器不用时能够更好的回收而不是一个一个去注释或者删除 我们引入带参数的装饰器概念 ''' import time '''FLAGE的目的是用它控制装饰器的开关, 那么当我们不用的时候就不要一个一个去注释只需将True改为False就行''' FLAGE = True def timmer_out(flag): def timmer(func): def inner(*args,**kwargs): if flag: start = time.time() ret = func(*args,**kwargs) end = time.time() print(end - start) return ret else: ret = func(*args, **kwargs) return ret return inner return timmer @timmer_out(FLAGE) #timmer_out(FLAGE) # 也相当于执行 timmer_out(FLAGE)--->>返回timmer———————>>@timmer(wahaha = timmer(wahaha)) def wahaha(): time.sleep(0.1) #不休息的话函数执行的太快难以计算时间 print('wahahahahahaha') wahaha() @timmer_out(FLAGE) def erguotou(): time.sleep(0.1) #不休息的话函数执行的太快难以计算时间 print('erguotoutoutou') erguotou() 输出结果: wahahahahahaha 0.10152268409729004 erguotoutoutou 0.10795140266418457
2、防止函数必要信息失效
''' print(wahaha.__name__) #查看字符串格式的函数名 print(wahaha.__doc__) #查看一个函数的注释 ''' #下面用__name__查看holiday的函数名 from functools import wraps def wrapper(func): @wraps(func) #加在最内层函数正上方 def inner(*args,**kwargs): print('在被装饰的函数执行之前做的事') ret = func(*args,**kwargs) print('在被装饰的函数执行之后做的事') return ret return inner @wrapper #holiday = wrapper(holiday) def holiday(day): ''' 这是一个放假通知 :param day: :return: ''' print('全体放假%s天'%day) return '好开心' print(holiday.__name__) print(holiday.__doc__) ''' 结果是inner和None 但我们想要的是打印holiday的字符串格式的函数名和函数的注释这时该怎么办? 解决方法就是 from functools import wraps 使用语法是@wraps(被装饰的函数名) ''' 输出结果: holiday 这是一个放假通知 :param day: :return:
六、装饰器 —— 装饰原则
1、开放封闭原则
1.对原函数的功能扩展是开放的
为什么要对功能扩展开放呢?
对于任何一个程序来说,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改。所以我们必须允许后来扩展、添加新功能。
2.对修改是封闭的
为什么要对修改封闭呢?
就像我们刚刚提到的,因为我们写的一个函数,很有可能在其他地方已经被导入使用了,如果这个时候我们对其进行了修改,很有可能影响其他已经正在使用该函数的代码。
装饰器就完美遵循了这个开放封闭原则。这就是学装饰器的初衷
小结:
1、装饰器的固定格式(模板)
#格式一 def timer(func): def inner(*args,**kwargs): '''执行函数之前要做的''' re = func(*args,**kwargs) '''执行函数之后要做的''' return re return inner #格式二 from functools import wraps def deco(func): @wraps(func) #加在最内层函数正上方 def wrapper(*args,**kwargs): return func(*args,**kwargs) return wrapper
推荐学习:python
The above is the detailed content of A closer look at Python decorator functions. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

To convert XML images, you need to determine the XML data structure first, then select a suitable graphical library (such as Python's matplotlib) and method, select a visualization strategy based on the data structure, consider the data volume and image format, perform batch processing or use efficient libraries, and finally save it as PNG, JPEG, or SVG according to the needs.
