Series using Pandas data analysis

P粉469731340
Release: 2022-07-22 15:53:20
Original
152 people have browsed it

1. Tool preparation

#A good tool for data analysis: anaconda. This tutorial is about using the jupyter tool of anaconda3 in the win10 system. , a tool that runs in a browser.

  1. Download URL: https://www.anaconda.com/

  2. Startup method

  • Start menu, open the anaconda prompt command line window

  • Enter the directory where the project is located, and set the directory yourself

  • Use the command jupyter notebook to open the browser

2. Series type

Once the index is created, the value inside cannot be modified individually

1. Create a Series object

  • Create an object through a list or array

import pandas as pd
import numpy as np
users=['张三','李四','王老五']
series1=pd.Series(users)
print(series1)
Copy after login

The result of the above code:

0     张三
1     李四
2    王老五
dtype: object
Copy after login
  • Creating a series object through a dictionary

users={'张三':20,'李四':25,'王五':21}
series2=pd.Series(users)
print(series2)
Copy after login

The result of the above code:

张三    20
李四    25
王五    21
dtype: int64
Copy after login

2. Get the sequence of the Series

print(series2.index)
Copy after login

The result of the above code:

Index(['张三', '李四', '王五'], dtype='object')
Copy after login

3. Get the value of the Series

print(series2.values)
Copy after login

The result of the above code:

[20 25 21]
Copy after login

4. Get a certain value

print(series2.values)
print(series2[1])
print(series2['王五'])
Copy after login

The result of the above code:

25
21
Copy after login

The above two methods You can get the value of the Series

5. Date and time index

pd.date_range('2022-10-01',periods=4,freq='M')
Copy after login
  • periods: divided into multiple intervals

  • freq: divided by year, month, day, week, time, etc.

6. Time interval index

pd.TimedeltaIndex([10,12,14,16],unit="D")
Copy after login

The result of the above code:

TimedeltaIndex(['10 days', '12 days', '14 days', '16 days'], dtype='timedelta64[ns]', freq=None)
Copy after login
  • The value of unit can be changed to Y, W, H, etc.

7.索引取值

import numpy as np
import pandas as pd
pd=pd.DataFrame(np.random.randint(1,100,(4,5)),index=['A','B','C','D'])
# pd['A':'C']#通过索引名称取值,结果包含最后一个
pd[0:3]#通过索引下标取值,结果不包含最后一个
Copy after login

8. 条件索引

conditon=series>50
series[conditon]
或
series[series>50]
Copy after login

以上代码结果:

	0	1	2	3	4
A	84.0	63.0	76.0	72.0	77.0
B	NaN	96.0	NaN	65.0	NaN
C	NaN	NaN	NaN	81.0	NaN
D	74.0	89.0	NaN	NaN	53.0
Copy after login

The above is the detailed content of Series using Pandas data analysis. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
1
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!