Python NumPy tutorial data type objects
[Related recommendations: Python3 video tutorial ]
Each ndarray has an associated data type (dtype) object. This data type object (dtype) tells us the layout of the array. This means it gives us the following information:
- Data type (integer, float, Python object, etc.)
- Data size (number of bytes)
- Endianness of the data (little endian or big endian)
- If the data type is a subarray, what is its shape and data type.
The value of an ndarray is stored in a buffer, which can be viewed as a contiguous block of memory bytes. So how these bytes will be interpreted is given by the dtype object.
Construct a data type (dtype) object
The data type object is an instance of the numpy.dtype class, you can use numpy.dtype
.
Parameters:
obj: The object to be converted to a data type object.
align : [bool, optional] Add padding to the field to match what the C compiler outputs for C-like structures.
copy : [bool, optional] Make a new copy of the data type object. If False, the result may simply be a reference to a built-in data type object.
# Python 程序创建数据类型对象 import numpy as np # np.int16 被转换为数据类型对象。 print(np.dtype(np.int16))
Output:
int16
# Python 程序创建一个包含 32 位大端整数的数据类型对象 import numpy as np # i4 表示大小为 4 字节的整数 # > 表示大端字节序和 # < 表示小端编码。 # dt 是一个 dtype 对象 dt = np.dtype('>i4') print("Byte order is:",dt.byteorder) print("Size is:", dt.itemsize) print("Data type is:", dt.name)
Output:
Byte order is: >
Size is: 4
Name of data type is: int32
The type specifier (i4 in the above case) can be taken Different forms:
b1, i1, i2, i4, i8, u1, u2, u4, u8, f2, f4, f8, c8, c16, a (representing byte, integer, none Signed integers, floating point numbers, complex numbers specifying bytes length, and fixed-length strings)
int8,...,uint8,...,float16, float32, float64, complex64, complex128 (this time bits size)
Note: dtype is different from type.
# 用于区分类型和数据类型的 Python 程序。 import numpy as np a = np.array([1]) print("type is: ",type(a)) print("dtype is: ",a.dtype)
Output:
type is:
dtype is: int32
Data type with structured array Object
Data type objects are useful for creating structured arrays. A structured array is an array containing different types of data. Structured arrays can be accessed with the help of fields.
Fields are like giving names to objects. In the case of a structured array, the dtype object will also be structured.
# 用于演示字段使用的 Python 程序 import numpy as np # 一种结构化数据类型,包含一个 16 字符的字符串(在“name”字段中)和两个 64 位浮点数的子数组(在“grades”字段中) dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))]) # 具有字段等级的对象的数据类型 print(dt['grades']) # 具有字段名称的对象的数据类型 print(dt['name'])
Output:
('
# Python 程序演示了数据类型对象与结构化数组的使用。 import numpy as np dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))]) # x 是一个包含学生姓名和分数的结构化数组。 # 学生姓名的数据类型是np.unicode_,分数的数据类型是np.float(64) x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) print(x[1]) print("Grades of John are: ", x[1]['grades']) print("Names are: ", x['name'])
Output :
##('John', [ 6., 7.])[Related recommendations:Grades of John are: [ 6. 7.]
Names are: ['Sarah' 'John']
Python3 video tutorial】
The above is the detailed content of Python NumPy tutorial data type objects. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML beautification is essentially improving its readability, including reasonable indentation, line breaks and tag organization. The principle is to traverse the XML tree, add indentation according to the level, and handle empty tags and tags containing text. Python's xml.etree.ElementTree library provides a convenient pretty_xml() function that can implement the above beautification process.

There is no simple and direct free XML to PDF tool on mobile. The required data visualization process involves complex data understanding and rendering, and most of the so-called "free" tools on the market have poor experience. It is recommended to use computer-side tools or use cloud services, or develop apps yourself to obtain more reliable conversion effects.

It is not easy to convert XML to PDF directly on your phone, but it can be achieved with the help of cloud services. It is recommended to use a lightweight mobile app to upload XML files and receive generated PDFs, and convert them with cloud APIs. Cloud APIs use serverless computing services, and choosing the right platform is crucial. Complexity, error handling, security, and optimization strategies need to be considered when handling XML parsing and PDF generation. The entire process requires the front-end app and the back-end API to work together, and it requires some understanding of a variety of technologies.

Modifying XML content requires programming, because it requires accurate finding of the target nodes to add, delete, modify and check. The programming language has corresponding libraries to process XML and provides APIs to perform safe, efficient and controllable operations like operating databases.

To convert XML images, you need to determine the XML data structure first, then select a suitable graphical library (such as Python's matplotlib) and method, select a visualization strategy based on the data structure, consider the data volume and image format, perform batch processing or use efficient libraries, and finally save it as PNG, JPEG, or SVG according to the needs.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
