This article will help you learn Golang and have a deep understanding of sync.Map in Golang. I hope it will be helpful to you!
We know that go provides map
This type allows us to store key-value pair data, but if we use it in a concurrent situation map
, you will find that it does not support concurrent reading and writing (an error will be reported).
In this case, we can use sync.Mutex
to ensure concurrency safety, but this will cause us to need to lock when reading and writing, which will lead to performance degradation.
In addition to the relatively inefficient way of using mutex locks, we can also use sync.Map
to ensure concurrency safety, which is more efficient than using sync.Mutex
in some scenarios. High performance.
This article will discuss some of the issues in sync.Map
that everyone is more interested in, such as why sync.Map
is needed after map
? Why is it fast? Applicable scenarios for sync.Map
(Note: It is not fast in all cases.) etc.
The design and implementation principles of sync.Map
will be explained in the next article.
If we look at the source code of map
, we will find that many of them will cause fatal
errors Places, such as mapaccess1
(function that reads key
from map
), if it is found that map
is being written, there will be fatal
Error.
[Related recommendations: Go video tutorial, Programming teaching]
if h.flags&hashWriting != 0 { fatal("concurrent map read and map write") }
The following is an actual example in use Example:
var m = make(map[int]int) // 往 map 写 key 的协程 go func() { // 往 map 写入数据 for i := 0; i < 10000; i++ { m[i] = i } }() // 从 map 读取 key 的协程 go func() { // 从 map 读取数据 for i := 10000; i > 0; i-- { _ = m[i] } }() // 等待两个协程执行完毕 time.Sleep(time.Second)
This will cause an error:
fatal error: concurrent map read and map write
This is because we are reading and writing to map
at the same time, and map
does not support concurrent reading Write, so an error will be reported. If map
allows concurrent reading and writing, there may be a lot of confusion when we use it.
(We can think about the specific confusion by comparing it with the multi-threaded scenario. This article will not expand on it).
For the problem of map
concurrent read and write errors, one of the solutions is to use sync.Mutex
To ensure concurrency safety,
But this will cause us to need to lock when reading and writing, which will lead to a decrease in performance.
Use sync.Mutex
to ensure concurrency safety. The above code can be changed to the following:
var m = make(map[int]int) // 互斥锁 var mu sync.Mutex // 写 map 的协程 go func() { for i := 0; i < 10000; i++ { mu.Lock() // 写 map,加互斥锁 m[i] = i mu.Unlock() } }() // 读 map 的协程序 go func() { for i := 10000; i > 0; i-- { mu.Lock() // 读 map,加互斥锁 _ = m[i] mu.Unlock() } }() time.Sleep(time.Second)
In this way, no error will be reported, but the performance will be reduced. , because we need to lock when reading and writing. (If you need higher performance, you can continue reading, don’t rush to use sync.Mutex
) The common usage of
sync.Mutex
is Embedsync.Mutex
in the structure instead of defining two independent variables.
In the previous section, we used sync.Mutex
to ensure concurrency safety, but when reading and writing Sometimes we all need to add a mutex lock.
This means that even if multiple coroutines perform concurrent reading, they still need to wait for the lock.
But the granularity of the mutex lock is too large, but in fact, there is no big problem with concurrent reading, and it should be allowed. If we allow concurrent reading, then we can improve performance.
Of course the developers of go have also taken this into consideration, so sync.RWMutex
is provided in the sync
package. This lock can allow concurrent reading, but writing still need to wait for the lock.
In other words, when a coroutine holds a write lock, other coroutines can neither read nor write, and can only read and write after waiting for the write lock to be released.
Use sync.RWMutex
to ensure concurrency safety. We can change it to the following:
var m = make(map[int]int) // 读写锁(允许并发读,写的时候是互斥的) var mu sync.RWMutex // 写入 map 的协程 go func() { for i := 0; i < 10000; i++ { // 写入的时候需要加锁 mu.Lock() m[i] = i mu.Unlock() } }() // 读取 map 的协程 go func() { for i := 10000; i > 0; i-- { // 读取的时候需要加锁,但是这个锁是读锁 // 多个协程可以同时使用 RLock 而不需要等待 mu.RLock() _ = m[i] mu.RUnlock() } }() // 另外一个读取 map 的协程 go func() { for i := 20000; i > 10000; i-- { // 读取的时候需要加锁,但是这个锁是读锁 // 多个协程可以同时使用 RLock 而不需要等待 mu.RLock() _ = m[i] mu.RUnlock() } }() time.Sleep(time.Second)
In this way, errors will not be reported, and the performance will also be improved, because we When reading, there is no need to wait for the lock.
Instructions:
RLock
without waiting. This is a read lock. Lock
, which is a write lock. When there is a write lock, other coroutines cannot read or write. Unlock
to release the lock. In other words, when using sync.RWMutex
, read operations can be executed concurrently, but write operations are mutually exclusive.
In this way, compared to sync.Mutex
, the number of times to wait for the lock is reduced, and naturally better performance can be obtained.
gin 框架里面就使用了
sync.RWMutex
来保证Keys
读写操作的并发安全。
通过上面的内容,我们知道了,有下面两种方式可以保证并发安全:
sync.Mutex
,但是这样的话,读写都是互斥的,性能不好。sync.RWMutex
,可以并发读,但是写的时候是互斥的,性能相对 sync.Mutex
要好一些。但是就算我们使用了 sync.RWMutex
,也还是有一些锁的开销。那么我们能不能再优化一下呢?答案是可以的。那就是使用 sync.Map
。
sync.Map
在锁的基础上做了进一步优化,在一些场景下使用原子操作来保证并发安全,性能更好。
但是就算使用 sync.RWMutex
,读操作依然还有锁的开销,那么有没有更好的方式呢?
答案是有的,就是使用原子操作来替代读锁。
举一个很常见的例子就是多个协程同时读取一个变量,然后对这个变量进行累加操作:
var a int32 var wg sync.WaitGroup wg.Add(2) go func() { for i := 0; i < 10000; i++ { a++ } wg.Done() }() go func() { for i := 0; i < 10000; i++ { a++ } wg.Done() }() wg.Wait() // a 期望结果应该是 20000才对。 fmt.Println(a) // 实际:17089,而且每次都不一样
这个例子中,我们期望的结果是 a
的值是 20000
,但是实际上,每次运行的结果都不一样,而且都不会等于 20000
。
其中很简单粗暴的一种解决方法是加锁,但是这样的话,性能就不好了,但是我们可以使用原子操作来解决这个问题:
var a atomic.Int32 var wg sync.WaitGroup wg.Add(2) go func() { for i := 0; i < 10000; i++ { a.Add(1) } wg.Done() }() go func() { for i := 0; i < 10000; i++ { a.Add(1) } wg.Done() }() wg.Wait() fmt.Println(a.Load()) // 20000
我们来看一下,使用锁和原子操作的性能差多少:
func BenchmarkMutexAdd(b *testing.B) { var a int32 var mu sync.Mutex for i := 0; i < b.N; i++ { mu.Lock() a++ mu.Unlock() } } func BenchmarkAtomicAdd(b *testing.B) { var a atomic.Int32 for i := 0; i < b.N; i++ { a.Add(1) } }
结果:
BenchmarkMutexAdd-12 100000000 10.07 ns/op BenchmarkAtomicAdd-12 205196968 5.847 ns/op
我们可以看到,使用原子操作的性能比使用锁的性能要好一些。
也许我们会觉得上面这个例子是写操作,那么读操作呢?我们来看一下:
func BenchmarkMutex(b *testing.B) { var mu sync.RWMutex for i := 0; i < b.N; i++ { mu.RLock() mu.RUnlock() } } func BenchmarkAtomic(b *testing.B) { var a atomic.Int32 for i := 0; i < b.N; i++ { _ = a.Load() } }
结果:
BenchmarkMutex-12 100000000 10.12 ns/op BenchmarkAtomic-12 1000000000 0.3133 ns/op
我们可以看到,使用原子操作的性能比使用锁的性能要好很多。而且在 BenchmarkMutex
里面甚至还没有做读取数据的操作。
sync.Map
里面相比 sync.RWMutex
,性能更好的原因就是使用了原子操作。
在我们从 sync.Map
里面读取数据的时候,会先使用一个原子 Load
操作来读取 sync.Map
里面的 key
(从 read
中读取)。
注意:这里拿到的是 key
的一份快照,我们对其进行读操作的时候也可以同时往 sync.Map
中写入新的 key
,这是保证它高性能的一个很关键的设计(类似读写分离)。
sync.Map
里面的 Load
方法里面就包含了上述的流程:
// Load 方法从 sync.Map 里面读取数据。 func (m *Map) Load(key any) (value any, ok bool) { // 先从只读 map 里面读取数据。 // 这一步是不需要锁的,只有一个原子操作。 read := m.loadReadOnly() e, ok := read.m[key] if !ok && read.amended { // 如果没有找到,并且 dirty 里面有一些 read 中没有的 key,那么就需要从 dirty 里面读取数据。 // 这里才需要锁 m.mu.Lock() read = m.loadReadOnly() e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] m.missLocked() } m.mu.Unlock() } // key 不存在 if !ok { return nil, false } // 使用原子操作读取 return e.Load() }
上面的代码我们可能还看不懂,但是没关系,这里我们只需要知道的是,从 sync.Map 读取数据的时候,会先做原子操作,如果没找到,再进行加锁操作,这样就减少了使用锁的频率了,自然也就可以获得更好的性能(但要注意的是并不是所有情况下都能获得更好的性能)。至于具体实现,在下一篇文章中会进行更加详细的分析。
也就是说,sync.Map 之所以更快,是因为相比 RWMutex,进一步减少了锁的使用,而这也就是 sync.Map 存在的原因了
现在我们知道了,sync.Map
里面是利用了原子操作来减少锁的使用。但是我们好像连 sync.Map
的一些基本操作都还不了解,现在就让我们再来看看 sync.Map
的基本用法。
sync.Map
的使用还是挺简单的,map
中有的操作,在 sync.Map
都有,只不过区别是,在 sync.Map
中,所有的操作都需要通过调用其方法来进行。sync.Map
里面几个常用的方法有(CRUD
):
Store
:我们新增或者修改数据的时候,都可以使用 Store
方法。Load
:读取数据的方法。Range
:遍历数据的方法。Delete
:删除数据的方法。var m sync.Map // 写入/修改 m.Store("foo", 1) // 读取 fmt.Println(m.Load("foo")) // 1 true // 遍历 m.Range(func(key, value interface{}) bool { fmt.Println(key, value) // foo 1 return true }) // 删除 m.Delete("foo") fmt.Println(m.Load("foo")) // nil false
注意:在 sync.Map
中,key
和 value
都是 interface{}
类型的,也就是说,我们可以使用任意类型的 key
和 value
。
而不像 map
,只能存在一种类型的 key
和 value
。从这个角度来看,它的类型类似于 map[any]any
。
另外一个需要注意的是,Range
方法的参数是一个函数,这个函数如果返回 false
,那么遍历就会停止。
在 sync.Map
源码中,已经告诉了我们 sync.Map
的使用场景:
The Map type is optimized for two common use cases: (1) when the entry for a given key is only ever written once but read many times, as in caches that only grow, or (2) when multiple goroutines read, write, and overwrite entries for disjoint sets of keys. In these two cases, use of a Map may significantly reduce lock contention compared to a Go map paired with a separate Mutex or RWMutex.
翻译过来就是,Map 类型针对两种常见用例进行了优化:
key
的条目只写入一次但读取多次时,如在只会增长的缓存中。(读多写少)在这两种情况下,与 Go map
与单独的 Mutex
或 RWMutex
配对相比,使用 sync.Map
可以显著减少锁竞争(很多时候只需要原子操作就可以)。
map
不支持并发读写。map
的并发读写:sync.Mutex
互斥锁。读和写的时候都使用互斥锁,性能相比 sync.RWMutex
会差一些。sync.RWMutex
读写锁。读的锁是可以共享的,但是写锁是独占的。性能相比 sync.Mutex
会好一些。sync.Map
里面会先进行原子操作来读取 key
,如果读取不到的时候,才会需要加锁。所以性能相比 sync.Mutex
和 sync.RWMutex
会好一些。sync.Map
里面几个常用的方法有(CRUD
):Store
:我们新增或者修改数据的时候,都可以使用 Store
方法。Load
:读取数据的方法。Range
:遍历数据的方法。Delete
:删除数据的方法。sync.Map
的使用场景,sync.Map
针对以下两种场景做了优化:key
只会写入一次,但是会被读取多次的场景。更多编程相关知识,请访问:编程视频!!
The above is the detailed content of A brief analysis of sync.Map in Golang. For more information, please follow other related articles on the PHP Chinese website!