Home > Backend Development > Golang > A brief analysis of sync.Map in Golang

A brief analysis of sync.Map in Golang

青灯夜游
Release: 2023-01-29 19:58:47
forward
3734 people have browsed it

This article will help you learn Golang and have a deep understanding of sync.Map in Golang. I hope it will be helpful to you!

A brief analysis of sync.Map in Golang

We know that go provides map This type allows us to store key-value pair data, but if we use it in a concurrent situation map, you will find that it does not support concurrent reading and writing (an error will be reported). In this case, we can use sync.Mutex to ensure concurrency safety, but this will cause us to need to lock when reading and writing, which will lead to performance degradation. In addition to the relatively inefficient way of using mutex locks, we can also use sync.Map to ensure concurrency safety, which is more efficient than using sync.Mutex in some scenarios. High performance. This article will discuss some of the issues in sync.Map that everyone is more interested in, such as why sync.Map is needed after map? Why is it fast? Applicable scenarios for sync.Map (Note: It is not fast in all cases.) etc.

The design and implementation principles of sync.Map will be explained in the next article.

Problems with map under concurrency

If we look at the source code of map, we will find that many of them will cause fatal errors Places, such as mapaccess1 (function that reads key from map), if it is found that map is being written, there will be fatal Error. [Related recommendations: Go video tutorial, Programming teaching]

if h.flags&hashWriting != 0 {
    fatal("concurrent map read and map write")
}
Copy after login

map Example of concurrent read and write exceptions

The following is an actual example in use Example:

var m = make(map[int]int)

// 往 map 写 key 的协程
go func() {
   // 往 map 写入数据
    for i := 0; i < 10000; i++ {
        m[i] = i
    }
}()

// 从 map 读取 key 的协程
go func() {
   // 从 map 读取数据
    for i := 10000; i > 0; i-- {
        _ = m[i]
    }
}()

// 等待两个协程执行完毕
time.Sleep(time.Second)
Copy after login

This will cause an error:

fatal error: concurrent map read and map write
Copy after login

This is because we are reading and writing to map at the same time, and map does not support concurrent reading Write, so an error will be reported. If map allows concurrent reading and writing, there may be a lot of confusion when we use it. (We can think about the specific confusion by comparing it with the multi-threaded scenario. This article will not expand on it).

Use sync.Mutex to ensure concurrency safety

For the problem of map concurrent read and write errors, one of the solutions is to use sync.Mutex To ensure concurrency safety, But this will cause us to need to lock when reading and writing, which will lead to a decrease in performance.

Use sync.Mutex to ensure concurrency safety. The above code can be changed to the following:

var m = make(map[int]int)
// 互斥锁
var mu sync.Mutex

// 写 map 的协程
go func() {
    for i := 0; i < 10000; i++ {
        mu.Lock() // 写 map,加互斥锁
        m[i] = i
        mu.Unlock()
    }
}()

// 读 map 的协程序
go func() {
    for i := 10000; i > 0; i-- {
        mu.Lock() // 读 map,加互斥锁
        _ = m[i]
        mu.Unlock()
    }
}()

time.Sleep(time.Second)
Copy after login

In this way, no error will be reported, but the performance will be reduced. , because we need to lock when reading and writing. (If you need higher performance, you can continue reading, don’t rush to use sync.Mutex) The common usage of

sync.Mutex is Embed sync.Mutex in the structure instead of defining two independent variables.

Use sync.RWMutex to ensure concurrency safety

In the previous section, we used sync.Mutex to ensure concurrency safety, but when reading and writing Sometimes we all need to add a mutex lock. This means that even if multiple coroutines perform concurrent reading, they still need to wait for the lock. But the granularity of the mutex lock is too large, but in fact, there is no big problem with concurrent reading, and it should be allowed. If we allow concurrent reading, then we can improve performance.

Of course the developers of go have also taken this into consideration, so sync.RWMutex is provided in the sync package. This lock can allow concurrent reading, but writing still need to wait for the lock. In other words, when a coroutine holds a write lock, other coroutines can neither read nor write, and can only read and write after waiting for the write lock to be released.

Use sync.RWMutex to ensure concurrency safety. We can change it to the following:

var m = make(map[int]int)
// 读写锁(允许并发读,写的时候是互斥的)
var mu sync.RWMutex

// 写入 map 的协程
go func() {
    for i := 0; i < 10000; i++ {
        // 写入的时候需要加锁
        mu.Lock()
        m[i] = i
        mu.Unlock()
    }
}()

// 读取 map 的协程
go func() {
    for i := 10000; i > 0; i-- {
        // 读取的时候需要加锁,但是这个锁是读锁
        // 多个协程可以同时使用 RLock 而不需要等待
        mu.RLock()
        _ = m[i]
        mu.RUnlock()
    }
}()

// 另外一个读取 map 的协程
go func() {
    for i := 20000; i > 10000; i-- {
        // 读取的时候需要加锁,但是这个锁是读锁
        // 多个协程可以同时使用 RLock 而不需要等待
        mu.RLock()
        _ = m[i]
        mu.RUnlock()
    }
}()

time.Sleep(time.Second)
Copy after login

In this way, errors will not be reported, and the performance will also be improved, because we When reading, there is no need to wait for the lock.

Instructions:

  • Multiple coroutinescan be used simultaneously RLock without waiting. This is a read lock.
  • Only one coroutine can use Lock, which is a write lock. When there is a write lock, other coroutines cannot read or write.
  • The coroutine holding the write lock can use Unlock to release the lock.
  • After the write lock is released, other coroutines can acquire the lock (read lock or write lock).

In other words, when using sync.RWMutex, read operations can be executed concurrently, but write operations are mutually exclusive. In this way, compared to sync.Mutex, the number of times to wait for the lock is reduced, and naturally better performance can be obtained.

gin 框架里面就使用了 sync.RWMutex 来保证 Keys 读写操作的并发安全。

有了读写锁为什么还要有 sync.Map?

通过上面的内容,我们知道了,有下面两种方式可以保证并发安全:

  • 使用 sync.Mutex,但是这样的话,读写都是互斥的,性能不好。
  • 使用 sync.RWMutex,可以并发读,但是写的时候是互斥的,性能相对 sync.Mutex 要好一些。

但是就算我们使用了 sync.RWMutex,也还是有一些锁的开销。那么我们能不能再优化一下呢?答案是可以的。那就是使用 sync.Map

sync.Map 在锁的基础上做了进一步优化,在一些场景下使用原子操作来保证并发安全,性能更好。

使用原子操作替代读锁

但是就算使用 sync.RWMutex,读操作依然还有锁的开销,那么有没有更好的方式呢? 答案是有的,就是使用原子操作来替代读锁。

举一个很常见的例子就是多个协程同时读取一个变量,然后对这个变量进行累加操作:

var a int32

var wg sync.WaitGroup
wg.Add(2)

go func() {
    for i := 0; i < 10000; i++ {
        a++
    }
    wg.Done()
}()

go func() {
    for i := 0; i < 10000; i++ {
        a++
    }
    wg.Done()
}()

wg.Wait()

// a 期望结果应该是 20000才对。
fmt.Println(a) // 实际:17089,而且每次都不一样
Copy after login

这个例子中,我们期望的结果是 a 的值是 20000,但是实际上,每次运行的结果都不一样,而且都不会等于 20000。 其中很简单粗暴的一种解决方法是加锁,但是这样的话,性能就不好了,但是我们可以使用原子操作来解决这个问题:

var a atomic.Int32

var wg sync.WaitGroup
wg.Add(2)

go func() {
    for i := 0; i < 10000; i++ {
        a.Add(1)
    }
    wg.Done()
}()

go func() {
    for i := 0; i < 10000; i++ {
        a.Add(1)
    }
    wg.Done()
}()

wg.Wait()

fmt.Println(a.Load()) // 20000
Copy after login

锁跟原子操作的性能差多少?

我们来看一下,使用锁和原子操作的性能差多少:

func BenchmarkMutexAdd(b *testing.B) {
   var a int32
   var mu sync.Mutex

   for i := 0; i < b.N; i++ {
      mu.Lock()
      a++
      mu.Unlock()
   }
}

func BenchmarkAtomicAdd(b *testing.B) {
   var a atomic.Int32
   for i := 0; i < b.N; i++ {
      a.Add(1)
   }
}
Copy after login

结果:

BenchmarkMutexAdd-12       100000000          10.07 ns/op
BenchmarkAtomicAdd-12      205196968           5.847 ns/op
Copy after login

我们可以看到,使用原子操作的性能比使用锁的性能要好一些。

也许我们会觉得上面这个例子是写操作,那么读操作呢?我们来看一下:

func BenchmarkMutex(b *testing.B) {
   var mu sync.RWMutex

   for i := 0; i < b.N; i++ {
      mu.RLock()
      mu.RUnlock()
   }
}

func BenchmarkAtomic(b *testing.B) {
   var a atomic.Int32
   for i := 0; i < b.N; i++ {
      _ = a.Load()
   }
}
Copy after login

结果:

BenchmarkMutex-12      100000000          10.12 ns/op
BenchmarkAtomic-12     1000000000          0.3133 ns/op
Copy after login

我们可以看到,使用原子操作的性能比使用锁的性能要好很多。而且在 BenchmarkMutex 里面甚至还没有做读取数据的操作。

sync.Map 里面的原子操作

sync.Map 里面相比 sync.RWMutex,性能更好的原因就是使用了原子操作。 在我们从 sync.Map 里面读取数据的时候,会先使用一个原子 Load 操作来读取 sync.Map 里面的 key(从 read 中读取)。 注意:这里拿到的是 key 的一份快照,我们对其进行读操作的时候也可以同时往 sync.Map 中写入新的 key,这是保证它高性能的一个很关键的设计(类似读写分离)。

sync.Map 里面的 Load 方法里面就包含了上述的流程:

// Load 方法从 sync.Map 里面读取数据。
func (m *Map) Load(key any) (value any, ok bool) {
   // 先从只读 map 里面读取数据。
   // 这一步是不需要锁的,只有一个原子操作。
   read := m.loadReadOnly()
   e, ok := read.m[key]
   if !ok && read.amended { // 如果没有找到,并且 dirty 里面有一些 read 中没有的 key,那么就需要从 dirty 里面读取数据。
      // 这里才需要锁
      m.mu.Lock()
      read = m.loadReadOnly()
      e, ok = read.m[key]
      if !ok && read.amended {
         e, ok = m.dirty[key]
         m.missLocked()
      }
      m.mu.Unlock()
   }
   
   // key 不存在
   if !ok {
      return nil, false
   }
   // 使用原子操作读取
   return e.Load()
}
Copy after login

上面的代码我们可能还看不懂,但是没关系,这里我们只需要知道的是,从 sync.Map 读取数据的时候,会先做原子操作,如果没找到,再进行加锁操作,这样就减少了使用锁的频率了,自然也就可以获得更好的性能(但要注意的是并不是所有情况下都能获得更好的性能)。至于具体实现,在下一篇文章中会进行更加详细的分析。

也就是说,sync.Map 之所以更快,是因为相比 RWMutex,进一步减少了锁的使用,而这也就是 sync.Map 存在的原因了

sync.Map 的基本用法

现在我们知道了,sync.Map 里面是利用了原子操作来减少锁的使用。但是我们好像连 sync.Map 的一些基本操作都还不了解,现在就让我们再来看看 sync.Map 的基本用法。

sync.Map 的使用还是挺简单的,map 中有的操作,在 sync.Map 都有,只不过区别是,在 sync.Map 中,所有的操作都需要通过调用其方法来进行。sync.Map 里面几个常用的方法有(CRUD):

  • Store:我们新增或者修改数据的时候,都可以使用 Store 方法。
  • Load:读取数据的方法。
  • Range:遍历数据的方法。
  • Delete:删除数据的方法。
var m sync.Map

// 写入/修改
m.Store("foo", 1)

// 读取
fmt.Println(m.Load("foo")) // 1 true

// 遍历
m.Range(func(key, value interface{}) bool {
    fmt.Println(key, value) // foo 1
    return true
})

// 删除
m.Delete("foo")
fmt.Println(m.Load("foo")) // nil false
Copy after login

注意:在 sync.Map 中,keyvalue 都是 interface{} 类型的,也就是说,我们可以使用任意类型的 keyvalue。 而不像 map,只能存在一种类型的 keyvalue。从这个角度来看,它的类型类似于 map[any]any

另外一个需要注意的是,Range 方法的参数是一个函数,这个函数如果返回 false,那么遍历就会停止。

sync.Map 的使用场景

sync.Map 源码中,已经告诉了我们 sync.Map 的使用场景:

The Map type is optimized for two common use cases: (1) when the entry for a given
key is only ever written once but read many times, as in caches that only grow,
or (2) when multiple goroutines read, write, and overwrite entries for disjoint
sets of keys. In these two cases, use of a Map may significantly reduce lock
contention compared to a Go map paired with a separate Mutex or RWMutex.
Copy after login

翻译过来就是,Map 类型针对两种常见用例进行了优化:

  • 当给定 key 的条目只写入一次但读取多次时,如在只会增长的缓存中。(读多写少)
  • 当多个 goroutine 读取、写入和覆盖不相交的键集的条目。(不同 goroutine 操作不同的 key)

在这两种情况下,与 Go map 与单独的 MutexRWMutex 配对相比,使用 sync.Map 可以显著减少锁竞争(很多时候只需要原子操作就可以)。

总结

  • 普通的 map 不支持并发读写。
  • 有以下两种方式可以实现 map 的并发读写:
    • 使用 sync.Mutex 互斥锁。读和写的时候都使用互斥锁,性能相比 sync.RWMutex 会差一些。
    • 使用 sync.RWMutex 读写锁。读的锁是可以共享的,但是写锁是独占的。性能相比 sync.Mutex 会好一些。
  • sync.Map 里面会先进行原子操作来读取 key,如果读取不到的时候,才会需要加锁。所以性能相比 sync.Mutexsync.RWMutex 会好一些。
  • sync.Map 里面几个常用的方法有(CRUD):
    • Store:我们新增或者修改数据的时候,都可以使用 Store 方法。
    • Load:读取数据的方法。
    • Range:遍历数据的方法。
    • Delete:删除数据的方法。
  • sync.Map 的使用场景,sync.Map 针对以下两种场景做了优化:
    • key 只会写入一次,但是会被读取多次的场景。
    • 多个 goroutine 读取、写入和覆盖不相交的键集的条目。

更多编程相关知识,请访问:编程视频!!

The above is the detailed content of A brief analysis of sync.Map in Golang. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:juejin.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template