Home > Database > Mysql Tutorial > MySQL针对Discuz论坛程序的基本优化教程_MySQL

MySQL针对Discuz论坛程序的基本优化教程_MySQL

PHP中文网
Release: 2016-05-27 13:45:36
Original
1374 people have browsed it

过了这么久,discuz论坛的问题还是困扰着很多网友,其实从各论坛里看到的问题总结出来,很关键的一点都是因为没有将数据表引擎转成InnoDB导致的,discuz在并发稍微高一点的环境下就表现的非常糟糕,产生大量的锁等待,这时候如果把数据表引擎改成InnoDB的话,我相信会好很多。这次就写个扫盲贴吧。

1. 启用innodb引擎,并配置相关参数

#skip-innodb
Copy after login

innodb_additional_mem_pool_size = 16M #一般16M也够了,可以适当调整下
innodb_buffer_pool_size = 6G #如果是专用db的话,一般是内存总量的80%
innodb_data_file_path = ibdata1:1024M:autoextend
innodb_file_io_threads = 4
innodb_thread_concurrency = 20
innodb_flush_log_at_trx_commit = 1
innodb_log_buffer_size = 16M
innodb_log_file_size = 256M
innodb_log_files_in_group = 3
innodb_max_dirty_pages_pct = 50
innodb_lock_wait_timeout = 120
innodb_file_per_table
Copy after login

修改表引擎为innodb:

mysql> alter table cdb_access engine = innodb;
Copy after login

其他表类似上面,把表名换一下即可...
将表存储引擎改成innodb后,不仅可以避免大量的锁等待,还可以提升查询的效率,因为innodb会把data和index都放在buffer pool中,效率更高。

2.缓存优化
在 my.cnf 中添加/修改以下选项:

 #取消文件系统的外部锁
skip-locking
#不进行域名反解析,注意由此带来的权限/授权问题
skip-name-resolve
#索引缓存,根据内存大小而定,如果是独立的db服务器,可以设置高达80%的内存总量
key_buffer = 512M
#连接排队列表总数
back_log = 200
max_allowed_packet = 2M
#打开表缓存总数,可以避免频繁的打开数据表产生的开销
table_cache = 512
#每个线程排序所需的缓冲
sort_buffer_size = 4M
#每个线程读取索引所需的缓冲
read_buffer_size = 4M
#MyISAM表发生变化时重新排序所需的缓冲
myisam_sort_buffer_size = 64M
#缓存可重用的线程数
thread_cache = 128
#查询结果缓存
query_cache_size = 128M
#设置超时时间,能避免长连接
set-variable = wait_timeout=60
#最大并发线程数,cpu数量*2
thread_concurrency = 4
#记录慢查询,然后对慢查询一一优化
log-slow-queries = slow.log
long_query_time = 1
#关闭不需要的表类型,如果你需要,就不要加上这个
skip-bdb
Copy after login

以上参数根据各自服务器的配置差异进行调整,仅作为参考.

3.索引优化
上面提到了,已经开启了慢查询,那么接下来就要对慢查询进行逐个优化了.

搜索的查询SQL大致如下:

 SELECT t.* FROM cdb_posts p, cdb_threads t WHERE
t.fid IN ('37', '45', '4', '6', '17', '41', '28', '32', '31', '1', '42')
AND p.tid=t.tid AND p.author LIKE 'JoansWin'
GROUP BY t.tid ORDER BY lastpost DESC LIMIT 0, 80;
Copy after login

用 EXPLAIN 分析的结果如下:

 mysql>EXPLAIN SELECT t.* FROM cdb_posts p, cdb_threads t WHERE
t.fid IN ('37', '45', '4', '6', '17', '41', '28', '32', '31', '1', '42')
AND p.tid=t.tid AND p.author LIKE 'JoansWin'
GROUP BY t.tid ORDER BY lastpost DESC LIMIT 0, 80;
Copy after login

+-----------+------------+----------+--------------+-------------+-----------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref   | rows | Extra
+-----------+------------+----------+--------------+-------------+-----------+-------------+
| 1 | SIMPLE  | t  | range | PRIMARY,fid | fid | 2  | NULL  | 66160 | Using where; 
Using temporary; Using filesort |
| 1 | SIMPLE  | p  | ref | tid   | tid | 3  | Forum.t.tid | 10 | Using where
| +----+-------------+-------+-------+---------------+------+---------+-------------+-------+
---------
Copy after login

只用到了 t.fid 和 p.tid,而 p.author 则没有索引可用,总共需要扫描
66160*10 = 661600 次索引,够夸张吧 :(
再分析 cdb_threads 和 cdb_posts 的索引情况:

 mysql>show index from cdb_posts;
Copy after login

+-----------+------------+----------+--------------+-------------+-----------+----------
---+----------+--------+------+--+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | 
Packed | Null | Index_type | Comment | +-----------+------------+----------+--------------+----
---------+-----------+-------------+----------+--------+------+--+
| cdb_posts |   0 | PRIMARY |   1 | pid   | A   |  680114 |  NULL | NULL |
| BTREE  |   |
| cdb_posts |   1 | fid  |   1 | fid   | A   |   10 |  NULL | NULL |
| BTREE  |   |
| cdb_posts |   1 | tid  |   1 | tid   | A   |  68011 |  NULL | NULL |
| BTREE  |   |
| cdb_posts |   1 | tid  |   2 | dateline | A   |  680114 |  NULL | NULL |
| BTREE  |   |
| cdb_posts |   1 | dateline |   1 | dateline | A   |  680114 |  NULL | NULL |
| BTREE  |   | 
+-----------+------------+----------+--------------+-------------+-----------+---
Copy after login

以及

 mysql>show index from cdb_threads;
Copy after login

+-----------+------------+----------+--------------+-------------+-----------+-------------+
----------+--------+------+-----+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part |
Packed | Null | Index_type | Comment | +-----------+------------+----------+--------------+-----
--------+-----------+-------------+----------+--------+------+-----+
| cdb_threads |   0 | PRIMARY |   1 | tid   | A   |  68480 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | lastpost |   1 | topped  | A   |   4 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | lastpost |   2 | lastpost | A   |  68480 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | lastpost |   3 | fid   | A   |  68480 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | replies |   1 | replies  | A   |   233 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | dateline |   1 | dateline | A   |  68480 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | fid  |   1 | fid   | A   |   10 |  NULL | NULL |
| BTREE  |   |
| cdb_threads |   1 | enablehot |   1 | enablehot | A   |   2 |  NULL | NULL |
| BTREE  |   | +-------------+------------+-----------+--------------+-------------+------
Copy after login

看到索引 fid 和 enablehot 基数太小,看来该索引完全没必要,不过,对于fid基数较大的情况,则可能需要保留>该索引.
所做修改如下:

 ALTER TABLE `cdb_threads` DROP INDEX `enablehot`, DROP INDEX `fid`, ADD INDEX (`fid`, `lastpost`);
ALTER TABLE `cdb_posts` DROP INDEX `fid`, ADD INDEX (`author`(10));
OPTIMIZE TABLE `cdb_posts`;
OPTIMIZE TABLE `cdb_threads`;
Copy after login

在这里, p.author 字段我设定的部分索引长度是 10, 是我经过分析后得出来的结果,不同的系统,这里的长度也不同,最好自己先取一下平均值,然后再适当调整.
现在,再来执行一次上面的慢查询,发现时间已经从 6s 变成 0.19s,提高了 30 倍.

 以上就是MySQL针对Discuz论坛程序的基本优化教程_MySQL的内容,更多相关内容请关注PHP中文网(www.php.cn)!


Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template