Home > Database > Mysql Tutorial > mysql性能优化之索引优化_MySQL

mysql性能优化之索引优化_MySQL

不言
Release: 2018-05-28 17:54:43
Original
1752 people have browsed it

  作为免费又高效的数据库,mysql基本是首选。良好的安全连接,自带查询解析、sql语句优化,使用读写锁(细化到行)、事物隔离和多版本并发控制提高并发,完备的事务日志记录,强大的存储引擎提供高效查询(表记录可达百万级),如果是InnoDB,还可在崩溃后进行完整的恢复,优点非常多。即使有这么多优点,仍依赖人去做点优化,看书后写个总结巩固下,有错请指正。

  完整的mysql优化需要很深的功底,大公司甚至有专门写mysql内核的,sql优化攻城狮,mysql服务器的优化,各种参数常量设定,查询语句优化,主从复制,软硬件升级,容灾备份,sql编程,需要的不是一星半点的知识与时间来掌握,作为一名像俺这样的菜鸟开发,强吃这么多消化不了也没意义:没地儿用啊,况且还有运维和dba,还不如把手头的业务写好,也就是写好点的sql,而且很多sql语句优化跟索引还是有很大关系的。

  首先,mysql的查询流程大致是:mysql客户端通过协议与mysql服务器建立连接,发送查询语句,先检查查询缓存,如果命中,直接返回结果,否则进行语句解析,有一系列预处理,比如检查语句是否写正确了,然后是查询优化(比如是否使用索引扫描,如果是一个不可能的条件,则提前终止),生成查询计划,然后查询引擎启动,开始执行查询,从底层存储引擎调用API获取数据,最后返回给客户端。怎么存数据、怎么取数据,都与存储引擎有关。然后,mysql默认使用的BTREE索引,并且一个大方向是,无论怎么折腾sql,至少在目前来说,mysql最多只用到表中的一个索引。

  mysql通过存储引擎取数据,自然跟存储引擎有很大关系,不同的存储引擎索引也不一样,如MyISAM的全文索引,即便索引叫一个名字内部组织方式也不尽相同,最常用的当然就是InnoDB了(还有完全兼容mysql的MariaDB,它的默引擎是XtraDB,跟InnoDB很像),这里写的是InnoDB引擎。而索引的实现也跟存储引擎,按照实现方式分,InnoDB的索引目前只有两种:BTREE索引和HASH索引。通常我们说的索引不出意外指的就是B树索引,InnoDB的BTREE索引,实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引。至于B树与B+树的区别,原谅的俺数据结构没好好学,也是需要补的地方。

  使用了BTREE索引,意味着所有的索引是按顺序排列存储的(升序),mysql就是这么干的,mysl中的BTREE索引抽象结构如下图(参考高性能mysql)。

  结构中,每一层节点均从左往右从小到大排列,key1 < key2 < ... < keyN,对于小于key1或在[key1,key2)或其他的值的节点,在进入叶子节点查找,是一个范围分布,同时,同一层节点之间可直接访问,因为他们之间有指针指向联系(MyISAM的BTREE索引没有)。每次搜索是一个区间搜索,有的话就找到了,没有的话就是空。索引能加快访问速度,因为有了它无需全表扫描数据(不总是这样),根据查找的值,跟节点中的值比较,通常使用二分查找,对于排好序的数值来说,平均速度几乎是最快的。

  val指向了哪里,对于InnoDB,它指向的就是表数据,因为InnoDB的表数据本身就是索引文件,这是与MyISAM索引的显著区别,MyISAM的索引指向的是表数据的地址(val指向的是类似于0x7DFF..之类)。比如对于InnoDB一个主键索引来说,可能是这样

        

  InnoDB的索引节点val值直接指向表数据,即它的叶子节点就是表数据,它们连在一起,表记录行没有再单独放在其他地方,叶子节点(数据)之间可访问。

  前面在BTREE的抽象结构中,索引值的节点是放在页中的,这里有两个需注意的问题:

  1. 叶子页、页中的值(上上图),即所谓的页是啥,俺加了个节点注释,即这里的页最小可近似当做是单个节点。我们知道计算机的存储空间是一块一块的,通常一块用完了再用另一块,如果上一块只剩余5kb,但这里刚好要申请8kb的空间,就得在一个新的块上申请这个空间,然后以后的申请又接在这个8kb后面,只要这个块的空间足够,那么上一块的5kb通常就成了所谓的“碎片”,电脑用多了会有很多这样零散的碎片空间,因此有碎片整理。在mysql中,这里的页可理解为块存储空间,即索引的树节点是存放在页中的,每一页(称为逻辑页)有固定大小,InnoDB目前是16kb,一页用完了,当继续插入表生成新的索引节点时,就去新的页中存储这个节点,再有新的节点就继续放在这个新的页的节点后面。

  2. 页分裂问题,一页总要被存满,然后新开一页继续,这种行为被称作页分裂。何时开辟新的页,mysql规定了一个分裂因子,达到页存储空间的15/16则存到下一页。页分裂的存在可能极大影响性能维护索引的性能。通常提倡的是,设定一个无意义的整数自增索引,有利于索引存储

    

  如果非自增或不是整数索引,如非自增整数、类似MD5的字符串,以他们作为索引值时,因为待插入的下一条数据的值不一定比上一条大,甚至比当前页所有值都小,需要跑到前几页去比较而找到合适位置,InnoDB无法简单的把新行插入到上一行后面,而找到并插入索引后,可能导致该页达到分裂因子阀值,需要页分裂,进一步导致后面所有的索引页的分裂和排序,数据量小也许没什么问题,数据量大的话可能会浪费大量时间,产生许多碎片。

    

  主键总是唯一且非空,InnoDB自动对它建立了索引(primary key),对于非主键字段上建立的索引,又称辅助索引,索引排列也是顺序排列,只是它还附带一个本条记录的主键值的数据域,不是指向本数据行的指针,在使用辅助索引查找时,先找到对应这一列的索引值,再根据索引节点上的另一个数据域---主键值,来查找该行记录,即每次查找实际经过查找了两次。额外的数据域存储主键值的好处是,当页分裂发生时,无需修改数据域的值,因为即使页分裂,该行的主键值是不变的,而地址就变了。比如name字段的索引简示如下 

      

   包含一列的索引称为单列索引,多列的称为复合索引,因为BTREE索引是顺序排列的,所以比较适合范围查询,但是在复合索引中,还应注意列数目、列的顺序以及前面范围查询的列对后边列的影响。

  比如有这样一张表

create table staffs(
    id int primary key auto_increment,
    name varchar(24) not null default &#39;&#39; comment &#39;姓名&#39;,
    age int not null default 0 comment &#39;年龄&#39;,
    pos varchar(20) not null default &#39;&#39; comment &#39;职位&#39;,
    add_time timestamp not null default current_timestamp comment &#39;入职时间&#39;
  ) charset utf8 comment &#39;员工记录表&#39;;
Copy after login

  添加三列的复合索引

alter table staffs add index idx_nap(name, age, pos);
Copy after login

  在BTREE索引的使用上,以下几种情况可以用到该索引或索引的一部分(使用explain简单查看使用情况):

  1. 全值匹配

  如select * from staffs where name = 'July' and age = '23' and pos = 'dev' ,key字段显示使用了idx_nap索引

  2. 匹配最左列,对于复合索引来说,不总是匹配所有字段列,但是可以匹配索引中靠左的列

  如select * from staffs where name = 'July' and age = '23',key字段显示用到了索引,注意,key_len字段(表示本次语句使用的索引长度)数值比上一条小了,意思是它并未使用全部索引列(通常这个长度可估摸着用了哪些索引列,埋个坑),事实上只用到了name和age列

  再试试select * from staffs where name = 'July',它也用了索引,key_len值更小,实际只用到了索引中的name列

  3. 匹配列前缀,即一个索引中列的前一部分,主要用在模糊匹配,如select * fromstaffs where name like 'J%',explain信息的key字段表示使用了索引,但是mysql的B树索引不能非列前缀的模糊匹配,如select * from staffs where name like '%y' 或者 like '%u%',据说是由于底层存储引擎的API限制

  4. 匹配范围,如select * from staffs where name > 'Mary',但俺在测试时发现>可以,>=却不行,至少在字符串列上不行(测试mysql版本5.5.12),然而在时间类型(timestamp)上却可以,不测试下还真不能确定说就用到了索引==

  出于好奇测了下整型字段的索引(idx_cn(count, name),count为整型),发现整型受限制少很多,下面的都能用到索引,连前模糊匹配的都行

select * from indexTest1 where count > &#39;10&#39;
  select * from indexTest1 where count >= &#39;10&#39;
  select * from indexTest1 where count > &#39;10%&#39;
  select * from indexTest1 where count >= &#39;10%&#39;
  select * from indexTest1 where count > &#39;%10%&#39;
  select * from indexTest1 where count >= &#39;%10%&#39;
Copy after login

  5. 精确匹配一列并范围匹配右侧相邻列,即前一列是固定值,后一列是范围值,它用了name与age两个列的索引(key_len推测)

  如select * from staffs where name = 'July' and age > 25

  6. 只访问索引的查询,比如staffs表的情况,索引建立在(name,age,pos)上面,前面一直是读取的全部列,如果我们用到了哪些列的索引,查询时也只查这些列的数据,就是只访问索引的查询,如

select name,age,pos from staffs where name = &#39;July&#39; and age = 25 and pos = &#39;dev&#39;
  select name,age from staffs where name = July and age > 25
Copy after login

  第一句用到了全部索引列,第二句只用了索引前两列,select的字段就最多只能是这两列,这种查询情况的索引,mysql称为覆盖索引,就是索引包含(覆盖)了查询的全部字段。是不是用到了索引查询,在explain中需要看最后一个Extra列的信息,Using index表明使用了覆盖索引,同时Using where表明也使用了where过滤

  7. 前缀索引

  区别于列前缀(类似like 'J%'形式的模糊匹配)和最左列索引(顺序取索引中靠左的列的查询),它只取某列的一部分作为索引。通常在说InnoDB跟MyISAM的区别时,一个明显的区别是:MyISAM支持全文索引,而InnoDB不行,甚至对于text、blob这种超长的字符串或二进制数据时,MyISAM会取前多少个字符作为索引,InnoDb的前缀索引跟这个类似,某些列,一般是字符串类型,很长,全部作为索引大大增加存储空间,索引也需要维护,对于长字符串,又想作为索引列,一个可取的办法就是取前一部分(前缀),代表一整列作为索引串,问题是:如何确保这个前缀能代表或大致代表这一列?所以mysql中有个概念是索引的选择性,是指索引中不重复的值的数目(也称基数)与整个表该列记录总数(#T)的比值,比如一个列表(1,2,2,3),总数是4,不重复值数目为3,选择性为3/4,因此选择性范围是[1/#T, 1],这个值越大,表示列中不重复值越多,越适合作为前缀索引,唯一索引(UNIQUE KEY)的选择性是1。

  比如有一列a varchar(255),以它作前缀索引,比如以7个测试,逐个增加看看选择性值增长到那个数基本不变,就表示可以代表整列了,再结合这个长度的索引列是否存储数据太多,做个权衡,基本就行了。但如果这个选择性本来就小的可怜还是算了

select count(distinct left(a, 7))/count(*) as non_repeat from tab;
Copy after login

  定好一个前缀数目,如9,添加索引时可以这样

alter table tab add index idx_pn(name(9)) --单独前缀索引
  alter table tab add index idx_cpn(count, name(9)) --复合前缀索引
Copy after login

  以上为常见的使用索引的方式,有这么些情况不能用或不能全用,有的就是上面情况的反例,以key(a, b, c)为例

  1. 跳过列,where a = 1 and c = 3,最多用到索引列a;where b = 2 and c = 3,一个也用不到,必须从最左列开始

  2. 前面是范围查询,where a = 1 and b > 2 and c = 3,最多用到 a, b两个索引列;

  3. 顺序颠倒,where c = 3 and b = 2 and a = 1,一个也用不到;

  4. 索引列上使用了表达式,如where substr(a, 1, 3) = 'hhh',where a = a + 1,表达式是一大忌讳,再简单mysql也不认。有时数据量不是大到严重影响速度时,一般可以先查出来,比如先查所有有订单记录的数据,再在程序中去筛选以'cp1001'开头的订单,而不是写sql过滤它;

  5. 模糊匹配时,尽量写 where a like 'J%',字符串放在左边,这样才可能用得到a列索引,甚至可能还用不到,当然这得看数据类型,最好测试一下。

  排序对索引的影响

  order by是经常用的语句,排序也遵循最左前缀列的原则,比如key(a, b),下面语句可以用到(测试为妙)

select * from tab where a > 1 order by b
  select * from tab where a > 1 and b > &#39;2015-12-01 00:00:00&#39; order by b
  select * from tab order by a, b
Copy after login

  以下情况用不到

  1. 非最左列,select * from tab order by b;

  2. 不按索引列顺序来的,select * from tab where b > '2015-12-01 00:00:00' order by a;

  3. 多列排序,但列的顺序方向不一致,select * from tab a asc, b desc。

  聚簇索引与覆盖索引

  前面说到,mysql索引从结构上只有两类,BTREE与HASH,覆盖索引只是在查询时,要查询的列刚好与使用的索引列完全一致,mysql直接扫描索引,然后就可返回数据,大大提高效率,因为不需再去原表查询、过滤,这种形式下的索引称作覆盖索引,比如key(a,b),查询时select a,b from tab where a = 1 and b > 2,本质原因:BTREE索引存储了原表数据。

  聚簇索引也不是单独的索引,前面简要写到,BTREE索引会把数据放在索引中,即索引的叶子页中,包括主键,主键是跟表数据紧挨着放在一起的,因为表数据只有一份,一列键值要跟每一行数据都紧挨在一起,所以一张表只有一个聚簇索引,对于mysql来说,就是主键列,它是默认的。

  聚簇索引将表数据组织到了一起(参考前面主键索引简略图),插入时严重依赖主键顺序,最好是连续自增,否则面临频繁页分裂问题,移动许多数据。

  哈希索引

  简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,也是对索引列计算一个散列值(类似md5、sha1、crc32),然后对这个散列值以顺序(默认升序)排列,同时记录该散列值对应数据表中某行的指针,当然这只是简略模拟图

      

  比如对姓名列建立hash索引,生成hash值按顺序排列,但是顺序排列的hash值并不对应表中记录,从地址指针可反应出来,而且,hash索引可能建立在两列或者更多列上,取得是多列数据后的hash值,它不存储表中数据。它先计算列数据的hash值,与索引中的hash值比较,找到了然后比对列数据是否相等,可能涉及其他列条件,然后返回数据。hash当然会有冲突,即碰撞,除非有很多冲突,一般hash索引效率很高,否则hash维护成本较高,因此哈希索引通常用在选择性较高的列上面。哈希索引的结构决定了它的特点:

  1. hash索引只是hash值顺序排列,跟表数据没有关系,无法应用于order by;

  2. hash索引是对它的所有列计算哈希值,因此在查询时,必须带上所有列,比如有(a, b)哈希索引,查询时必须 where a = 1 and b = 2,少任何一个不行;

  3. hash索引只能用于比较查询 = 或 IN,其他范围查询无效,本质还是因不存储表数据;

  4. 一旦出现碰撞,hash索引必须遍历所有的hash值,将地址所指向数据一一比较,直到找到所有符合条件的行。

  填坑

  前面提到通过explain的key_len字段,可大致估计出用了哪些列,索引列的长度跟索引列的数据类型直接相关,一般,我们说int是4字节,bigint8字节,char是1字节,考虑到建表时要指定字符集,比如utf8,还跟选的字符集有关(==!),在utf8下边,一个char是3字节,但是知道这些仍不能说key_len就是将用到的索引列的数据类型代表字节数一加不就完啦?事实总有点区别,测试方法比较机械(以下基于mysql 5.5.2)

  建表,加索引,int型

--测试表
  create table keyLenTest1(
    id int primary key auto_increment,
    typeKey int default 0 ,
    add_time timestamp not null default current_timestamp
  ) charset utf8
  --添加索引
  alter table keyLenTest1 add index idx_k(typeKey);
Copy after login

  可知int型索引默认长度为5,在4字节基础上+1

  char型

 --改为char型,1个字符
  alter table keyLenTest1 modify typeKey char(1);
Copy after login

--改为char型,2个字符
  alter table keyLenTest1 modify typeKey char(2);
Copy after login

  可知,char型初始是4字节(3+1 bytes),后续按照3字节递增

  varchar型

--改为varchar型,1个字符
  alter table keyLenTest1 modify typeKey varchar(1);
Copy after login

--改为varchar型,2个字符
  alter table keyLenTest1 modify typeKey varchar(2);
Copy after login

  可知,varchar型,1个字符时,key_len为6,以后以3字节递增

  所以,如果一个语句用到了int、char、varchar,key_len如何计算以及用了哪些索引列应该很清楚了。

  如果想了解的更详细点,explain各字段意义,索引的更多细节,除了explain,还有show profiles、慢查询日志等(没细看),推荐看高性能mysql,毕竟俺写的太肤浅。

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template