MySQL5.7SYS系统SCHEMA_MySQL
在说明系统数据库之前,先来看下MySQL在数据字典方面的演变历史:
MySQL4.1 提供了information_schema 数据字典。从此可以很简单的用SQL语句来检索需要的系统元数据了。
MySQL5.5 提供了performance_schema 性能字典。 但是这个字典比较专业,一般人可能也就看看就不了了之了。
MySQL5.7 提供了 sys系统数据库。 sys数据库里面包含了一系列的存储过程、自定义函数以及视图来帮助我们快速的了解系统的元数据信息。
sys系统数据库结合了information_schema和performance_schema的相关数据,让我们更加容易的检索元数据。 现在呢,我就示范下几种场景下如何快速的使用。
第一,
比如之前想要知道某个表是否存在与否,可以用以下两种方法:
A, 悲观的方法,写SQL从information_schema中拿信息:
mysql> SELECT IF(COUNT(*) = 0,'Not exists!','Exists!') AS 'result' FROM information_schema.tables WHERE table_schema = 'new_feature' AND table_name = 't1'; +-------------+ | result | +-------------+ | Not exists! | +-------------+ 1 row in set (0.00 sec)
B,乐观的方法,假设表存在,写一个存储过程:
DELIMITER $$ USE `new_feature`$$ DROP PROCEDURE IF EXISTS `sp_table_exists`$$ CREATE DEFINER=`root`@`localhost` PROCEDURE `sp_table_exists`( IN db_name VARCHAR(64), IN tb_name VARCHAR(64), OUT is_exists VARCHAR(60) ) BEGIN DECLARE no_such_table CONDITION FOR 1146; DECLARE EXIT HANDLER FOR no_such_table BEGIN SET is_exists = 'Not exists!'; END; SET @stmt = CONCAT('select 1 from ',db_name,'.',tb_name); PREPARE s1 FROM @stmt; EXECUTE s1; DEALLOCATE PREPARE s1; SET is_exists = 'Exists!'; END$$ DELIMITER ;
现在来调用:
mysql> call sp_table_exists('new_feature','t1',@result); Query OK, 0 rows affected (0.00 sec) mysql> select @result; +-------------+ | @result | +-------------+ | Not exists! | +-------------+ 1 row in set (0.00 sec)
现在我们直接用sys数据库里面现有的存储过程来进行调用,
mysql> CALL table_exists('new_feature','t1',@v_is_exists); Query OK, 0 rows affected (0.00 sec) mysql> SELECT IF(@v_is_exists = '','Not exists!',@v_is_exists) AS 'result'; +-------------+ | result | +-------------+ | Not exists! | +-------------+ 1 row in set (0.00 sec)
第二,获取没有使用过的索引。
mysql> SELECT * FROM schema_unused_indexes; +---------------+-------------+--------------+ | object_schema | object_name | index_name | +---------------+-------------+--------------+ | new_feature | t1 | idx_log_time | | new_feature | t1 | idx_rank2 | +---------------+-------------+--------------+ 2 rows in set (0.00 sec)
第三, 检索指定数据库下面的表扫描信息,过滤出执行次数大于10的查询,
mysql> SELECT * FROM statement_analysis WHERE db='new_feature' AND full_scan = '*' AND exec_count > 10\G *************************** 1. row *************************** query: SHOW STATUS db: new_feature full_scan: * exec_count: 26 err_count: 0 warn_count: 0 total_latency: 74.68 ms max_latency: 3.86 ms avg_latency: 2.87 ms lock_latency: 4.50 ms rows_sent: 9594 rows_sent_avg: 369 rows_examined: 9594 rows_examined_avg: 369 rows_affected: 0 rows_affected_avg: 0 tmp_tables: 0 tmp_disk_tables: 0 rows_sorted: 0 sort_merge_passes: 0 digest: 475fa3ad9d4a846cfa96441050fc9787 first_seen: 2015-11-16 10:51:17 last_seen: 2015-11-16 11:28:13 *************************** 2. row *************************** query: SELECT `state` , `round` ( SUM ... uration (summed) in sec` DESC db: new_feature full_scan: * exec_count: 12 err_count: 0 warn_count: 12 total_latency: 16.43 ms max_latency: 2.39 ms avg_latency: 1.37 ms lock_latency: 3.54 ms rows_sent: 140 rows_sent_avg: 12 rows_examined: 852 rows_examined_avg: 71 rows_affected: 0 rows_affected_avg: 0 tmp_tables: 24 tmp_disk_tables: 0 rows_sorted: 140 sort_merge_passes: 0 digest: 538e506ee0075e040b076f810ccb5f5c first_seen: 2015-11-16 10:51:17 last_seen: 2015-11-16 11:28:13 2 rows in set (0.01 sec)
第四, 同样继续上面的,过滤出有临时表的查询,
mysql> SELECT * FROM statement_analysis WHERE db='new_feature' AND tmp_tables > 0 ORDER BY tmp_tables DESC LIMIT 1\G *************************** 1. row *************************** query: SELECT `performance_schema` . ... name` . `SUM_TIMER_WAIT` DESC db: new_feature full_scan: * exec_count: 2 err_count: 0 warn_count: 0 total_latency: 87.96 ms max_latency: 59.50 ms avg_latency: 43.98 ms lock_latency: 548.00 us rows_sent: 101 rows_sent_avg: 51 rows_examined: 201 rows_examined_avg: 101 rows_affected: 0 rows_affected_avg: 0 tmp_tables: 332 tmp_disk_tables: 15 rows_sorted: 0 sort_merge_passes: 0 digest: ff9bdfb7cf3f44b2da4c52dcde7a7352 first_seen: 2015-11-16 10:24:42 last_seen: 2015-11-16 10:24:42 1 row in set (0.01 sec)
可以看到上面查询详细的详细,再也不用执行show status 手工去过滤了。
第五, 检索执行次数排名前五的语句,
mysql>SELECT statement,total FROM user_summary_by_statement_type WHERE `user`='root' ORDER BY total DESC LIMIT 5; +-------------------+-------+ | statement | total | +-------------------+-------+ | jump_if_not | 17635 | | freturn | 3120 | | show_create_table | 289 | | Field List | 202 | | set_option | 190 | +-------------------+-------+ 5 rows in set (0.01 sec)
示例我就写这么多了,详细的去看使用手册并且自己摸索去吧。
以上就是MySQL5.7SYS系统SCHEMA_MySQL的内容,更多相关内容请关注PHP中文网(www.php.cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.
