How to implement skip table data structure in golang
Skip list is a data structure based on linked list, similar to balanced tree, which can realize fast search, insertion and deletion operations. The skip list was proposed by William Pugh in 1990. Its implementation is based on the linked list, and multi-level indexes are added on the basis of the linked list, so that the nodes of the linked list can be quickly located through the index. The linked list at the bottom of the jump list can be a one-way linked list, a doubly linked list, etc., but the most commonly used one is a one-way linked list. This article mainly introduces how to use Golang language to implement skip table data structure.
Structure of skip list
The main structure of skip list consists of three parts: head node, array and linked list. The head node is used to locate the starting node of the jump list. Arrays are used to store multi-level indexes. Each element of the array is a pointer to a linked list node. Linked list is the core of skip list and is used to store data.
Each level of the jump list contains some nodes, and the nodes are connected to each other through pointers. The number of nodes on each level gradually decreases. The lowest layer contains all data nodes. This layer is usually called the "base layer", also known as the "level 0 linked list". Each node is either a data node or an index node. The index node points to the next level node, and there can be up to logn level indexes, where n is the number of data nodes. If there is a k-level index, then the node at the i-th level index will make every 2^i nodes of the i-1-th level index node point to the node at the i-th level index. Each node contains a pointer to the next level node at the same location.
Golang implements skip table
To implement the skip table data structure in Golang language, you mainly need to implement the following functions.
- createNode function: Responsible for creating jump table nodes.
type skipNode struct {
forward []*skipNode key int val interface{}
}
func createNode(level int, key int, val interface{}) *skipNode {
return &skipNode{ forward: make([]*skipNode, level), key: key, val: val, }
}
- insert function: Responsible for inserting data into the jump table.
func (list *SkipList) insert(key int, val interface{}, level int) {
update := make([]*skipNode, list.level+1) currentNode := list.head for i := list.level; i >= 0; i-- { for currentNode.forward[i] != nil && currentNode.forward[i].key < key { currentNode = currentNode.forward[i] } update[i] = currentNode } currentNode = currentNode.forward[0] if currentNode != nil && currentNode.key == key { currentNode.val = val } else { newNode := createNode(level, key, val) for i := 0; i <= level; i++ { newNode.forward[i] = update[i].forward[i] update[i].forward[i] = newNode } }
}
- delete function: responsible delete data.
func (list *SkipList) delete(key int) {
update := make([]*skipNode, list.level+1) currentNode := list.head for i := list.level; i >= 0; i-- { for currentNode.forward[i] != nil && currentNode.forward[i].key < key { currentNode = currentNode.forward[i] } update[i] = currentNode } currentNode = currentNode.forward[0] if currentNode != nil && currentNode.key == key { for i := 0; i <= list.level; i++ { if update[i].forward[i] != currentNode { break } update[i].forward[i] = currentNode.forward[i] } }
}
- find function: Responsible for finding data in the skip list.
func (list SkipList) find(key int) skipNode {
currentNode := list.head for i := list.level; i >= 0; i-- { for currentNode.forward[i] != nil && currentNode.forward[i].key < key { currentNode = currentNode.forward[i] } } currentNode = currentNode.forward[0] if currentNode != nil && currentNode.key == key { return currentNode } else { return nil }
}
The above are the main requirements to implement the skip list function. In addition, a SkipList structure needs to be implemented, which contains some attributes of the skip list, such as the head node, maximum depth, etc.
Conclusion
The skip table is an efficient data structure that can implement insertion, deletion and search operations with an average O(log n) time complexity. The Golang language provides a relatively friendly syntax and standard library, so it is relatively simple to implement jump tables using the Golang language. By studying this article, I believe that readers will not only have a deeper understanding of skip tables, but also master the implementation method of skip tables in Golang language.
The above is the detailed content of How to implement skip table data structure in golang. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...
