Table of Contents
The motivation of causal machine learning
From prediction to decision-making​
What is causation and causal effect? ​​​
Responsible Artificial Intelligence Dashboard (Azure Machine Learning Studio): Cause Analysis
Summary​
Home Technology peripherals AI Make effective actionable decisions to optimize business KPIs by using causal machine learning

Make effective actionable decisions to optimize business KPIs by using causal machine learning

Apr 04, 2023 am 11:40 AM
AI machine learning kpi

Causal analysis in the machine learning platform Azure Machine Learning Studio can answer causal questions through an end-to-end automation framework.

Translator | Li Rui

Reviewer | Sun Shujuan

In different scenarios, commonly used machine learning modeling techniques may misunderstand the true relationships in the data. Here we seek to change this paradigm to find actionable insights beyond spurious correlations based on estimating causal relationships and measuring treatment effects on target key performance indicator (KPI) outcomes. ​

Make effective actionable decisions to optimize business KPIs by using causal machine learning

The motivation of causal machine learning

Assume that the historical data or observation data of a certain product of a certain company in the past year are obtained. If a product loses 5% of its customers, the company's goal is to reduce the churn rate through targeted campaigns. Typically a classic customer churn prediction propensity model (propensity score - covariate churn probability of customer behavior) is built and prescribes discounts or upsells/cross-sells to customers by selecting thresholds. ​

Now, business managers want to predict the effectiveness of customer churn, such as whether the company's customers are retained due to promotions or marketing activities, or the opposite? This requires traditional AB testing standard experiments ,experimentation takes some time and is not feasible and ,costly in some cases. ​

Therefore, we need to think about issues beyond the tendency model. Churn prediction with supervision is useful, but not every time because it lacks recommendations for recommending the next best action in hypothetical situations. The problem of targeting those personalized customers who are able to respond positively to a business's marketing proposition without wasting money on failure cases, thereby taking the next best action/intervention and changing future outcomes (e.g. maximizing retention) is causal inference Lift modeling in . ​

When understanding certain counterfactual questions in the consumer world, such as how would consumer behavior change if retail prices were raised or lowered (what is the impact of price on behavioral patterns)? If a business shows ads to customers, will they buy the product (the impact of advertising on purchasing)? This includes data-driven decision-making through causal modeling. ​

In general, forecasting or forecasting questions focus on how many people will subscribe in the next month, while causal questions ask what will happen if some policy changes (for example, if a How many people will subscribe to the event). ​

Causal analysis will go further. It is designed to infer various aspects of the data generation process. With the help of these aspects, one can infer not only the likelihood of events under static conditions but also the dynamics of events under changing conditions. This ability includes predicting the effects of actions (e.g., treatment or policy decisions), determining the causes of reported events, and assessing responsibility and attribution (e.g., whether event x was necessary or sufficient for event y to occur). ​

When one uses supervised machine learning to predict models using pseudo-correlation patterns, there is an implicit assumption that things will continue as they have been in the past. At the same time, the environment is being actively changed in a way that often breaks these patterns, as a result of decisions made or actions taken based on predicted outcomes. ​

From prediction to decision-making​

For decision-making, you need to find the characteristics that lead to the outcome and estimate how the outcome will change if the characteristics change. Many data science problems are causal problems, and estimating counterfactuals is common in decision-making scenarios. ​

  • A/B Experiment: If you change the color of the buttons on your website, will it lead to higher engagement? ​
  • Policy Decision: If this treatment/policy is adopted, how will it lead to a change in outcomes? Will this result in healthier patients/more revenue? ​
  • Policy Assessment : What changes did the company make in the past or what is known until now, and how did the results change, and did the policies it created help or hinder the product it was trying to change? ​
  • Credit Attribution: People buy things because See the ad? Will they buy it? ​

What is causation and causal effect? ​​​

If an action or treatment (T) causes a result (Y) , if and only if the action (T) results in a change in the outcome (Y), holding everything else constant. Causality means that by changing one factor, another factor can be changed. ​

For example: If aspirin relieves a headache, it will occur if and only if aspirin can cause a change in the headache. ​

If marketing can bring about an increase in sales, if and only if marketing activities can bring about a change in sales, then everything else can remain the same. ​

The causal effect is the magnitude of the change in Y with a unit change in T, not the other way around:​

Causal effect = E [Y | do(T=1)] - E [Y | do (T = 0)] (Judea Pearl's Do-Calculus)

Causal inference requires domain knowledge and assumptions and expertise. Microsoft's ALICE research team developed the DoWhy and EconML open source libraries to make people's work and life easier. The first step in any causal analysis is to ask a clear question: ​

  • What treatments/actions are you interested in? ​
  • What outcomes do you want to consider? ​
  • What confounding factors may be associated with outcome and treatment? ​

Causal analysis pipeline: End-to-end causal inference (DECI) based on deep learning (Microsoft patent). ​

Causal discovery-causal identification-causal estimation-causal verification. ​

Make effective actionable decisions to optimize business KPIs by using causal machine learning

Responsible Artificial Intelligence Dashboard (Azure Machine Learning Studio): Cause Analysis

This function is based on fitting the model in the model registry explanation, one can explore what might have happened if there was a causal understanding of the same variables. The causal effects of different characteristics can be observed and compared with idiosyncratic effects, and different groups can be observed and what characteristics or policies work best for them. ​

  • DECI: Provides a framework for end-to-end causal inference, which can also be used alone for discovery or estimation. ​
  • EconML: Provides a variety of causality estimation methods. ​
  • DoWhy: Provides multiple identification and verification methods. ​
  • ShowWhy: Provides code-free end-to-end causal analysis for causal decision-making in a user-friendly graphical user interface (GUI).

Summary​

Modern machine learning and deep learning algorithms can find complex patterns in data that interpret black-box algorithms, and their interpretations may mean that machine learning algorithms learn from the world To what. ​

When these learned machine learning algorithms are applied to society to make policy decisions such as loan approvals and health insurance policies, the world it understands does not necessarily reflect the world well. What's going on. ​

However, data-driven predictive models are transparent but cannot truly explain. Interpretability requires a causal model (as evidenced by the Table 2 fallacy). Causal models reliably represent some process in the world. Explainable AI should be able to reason to make effective decisions without bias. ​

Original title: ​​Causal Analysis in Azure Machine Learning Studio to answer your Causal questions through an end-to-end automated framework​​ , Author: Hari Hara

The above is the detailed content of Make effective actionable decisions to optimize business KPIs by using causal machine learning. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles