How to implement EVM using Golang
With the continuous development of blockchain technology, Ethereum, as the most representative smart contract platform, already has good support and a huge ecosystem for developers. However, since the software architecture of the Ethereum Virtual Machine (EVM) is based on the development of the Solidity language, in addition, in order to improve performance, the EVM implements a JIT (Just In Time) compiler for code optimization, all of which are done in a certain way. To this extent, it limits the development efficiency of the Ethereum ecosystem.
Based on these problems, many developers try to use other programming languages to develop EVM in the hope of achieving more efficient smart contract code execution. Golang is a programming language developed by Google that provides a very convenient way to do low-level programming. Below we will explore how to use Golang to implement EVM.
EVM Overview
The Ethereum Virtual Machine (EVM) is a stack-based virtual machine that executes Ethereum smart contracts. EVM provides a unified execution environment on the entire Ethereum network, ensuring that smart contracts can run as expected on different nodes. The EVM defines a set of instructions that change state during specific operations. These states include memory, storage, and stack.
Use Golang to implement EVM
To use Golang to implement EVM, we need to install go-ethereum first. go-ethereum is an official Golang implementation of Ethereum that provides some very useful libraries and features. It can be used as an Ethereum node for building Ethereum dApps (decentralized applications).
Assuming we have installed the go-ethereum and solidity compilers, we can start implementing EVM using the following steps:
Step 1: Define the instruction set of EVM
In Golang , we can use enumeration types to define the instruction set of the EVM, for example:
type OpCode byte const ( STOP OpCode = iota ADD MUL SUB DIV SDIV MOD SMOD ADDMOD MULMOD EXP SIGNEXTEND ... )
These instructions can be found in the Ethereum Yellow Book, or obtained from the source code in the go-ethereum package. We need to define a method for each instruction that executes the logic of the instruction. For example, for the ADD instruction, we can define the following method:
func (evm *EVM) add() { x, y := evm.stack.Pop(), evm.stack.Pop() result := x.Add(y) evm.stack.Push(result) }
Step 2: Parse Solidity bytecode
When we write a smart contract using Solidity, the compiler compiles it into bytes code form and then deploy it on the Ethereum network. In our Golang EVM, we need to first parse the Solidity bytecode and then convert it into EVM instructions. We can do this using the parser from the go-ethereum package. For example:
import ( "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/vm" ) func (evm *EVM) execute(code []byte) { vm := vm.NewEVM(evm.context, evm.stateDB, evm.vmConfig) contract := vm.NewContract(&vm.ContractConfig{ Code: common.CopyBytes(code), GasLimit: 1000000, Value: big.NewInt(0), }) contract.SetCallCodeFn(evm.callCode) contract.SetStaticCallFn(evm.staticCall) contract.SetDelegateCallFn(evm.delegateCall) vm.Execute(evm.context, contract) }
The above code will parse the Solidity bytecode into a Contract object, and then call the EVM's Execute() method to execute the code.
Step 3: Implement memory, storage and stack
EVM has three states: memory, storage and stack. In Golang EVM, we need to implement these states. We can use Golang's slice as memory, map as storage, and Golang's stack as stack.
type EVM struct { context *core.ExecutionContext stateDB *state.StateDB vmConfig vm.Config memory []byte storage map[common.Hash] common.Hash stack *stack }
Step 4: Implement the logic of the instruction set
After we define the instruction set, we need to implement the logic of each instruction. Each instruction changes the state of the stack. For example, in the case of the ADD instruction, it pops two values from the stack, adds them, and finally pushes the result back onto the stack. We can define the following method to implement the logic of the ADD instruction:
func (evm *EVM) add() { x, y := evm.stack.Pop(), evm.stack.Pop() result := x.Add(y) evm.stack.Push(result) }
Step 5: Implement various exception handling
When implementing the logic of the instruction, we need to handle various exceptions, such as Stack overflow, call depth is too large, memory overflow, etc. Assuming that our Golang EVM is a complete Ethereum implementation, we need to handle a series of other exceptions, such as the account does not exist, the account is locked, mining has not been completed, etc.
Conclusion
Using Golang to implement EVM can improve the performance and development efficiency of smart contracts. It provides developers with greater flexibility and freedom to better adapt to various application scenarios. Although the implementation of Golang EVM will be more complicated than the implementation of Solidity EVM, it provides a new and efficient path for the development of EVM.
The above is the detailed content of How to implement EVM using Golang. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...
