Table of Contents
Explore different methods
Step by step to build a document Q&A chatbot
Prerequisites
Workflow
Setup
Build Index and Save
查询索引并获得响应
一些高级用法的说明
总结
Home Technology peripherals AI In-depth analysis, step by step to build your chatbot using GPT

In-depth analysis, step by step to build your chatbot using GPT

Apr 07, 2023 pm 07:41 PM
robot gpt llm

Chatting with ChatGPT is fun and informative - you can explore some new ideas by chatting with it. But these are more casual use cases, and the novelty quickly wears off, especially once one realizes that it can produce hallucinations.

How to use ChatGPT in a more efficient way? After OpenAI releases the GPT3.5 series of APIs, you can do much more than just chat. QA (Question and Answer) is a very effective use case for businesses and individuals - ask a bot about your own files/data using natural language and it can answer quickly by retrieving information from the file and generating a response. Use it for customer support, comprehensive user research, personal knowledge management, and more.

Ask the bot questions related to your files. Image generated using the stable diffusion method.

This article will explore how to build a Q&A chatbot based on your own data, including why some methods don't work, and a step-by-step guide on how to use llama-index and the GPT API to build a document Q&A chatbot in an efficient way.

(If you just want to know how to build a Q&A chatbot, you can skip directly to the "Building a Document Q&A Chatbot Step by Step" section)

Explore different methods

When ChatGPT comes out When working, you can think of using it as an assistant in your work, thereby saving your time and energy.

The first thing that comes to mind is to use your own data to fine-tune the GPT model to achieve this goal. However, fine-tuning costs quite a bit of money and requires a large data set with examples. It's also impossible to fine-tune every time a file changes. The more critical point is that fine-tuning cannot make the model "know" all the information in the document. Instead, it must teach the model a new skill. Therefore, fine-tuning is not a good idea for (multi-)document quality assurance.

The second method is to do prompt engineering by providing context in the prompt. For example, instead of asking the question directly, you can append the original document content before the actual question. But the attention of the GPT model is limited - it can only accept a few thousand words in the hint (about 4000 tokens or 3000 words). With thousands of customer feedback emails and hundreds of product documents, it's impossible to give it all the context in a prompt. Passing a long context to the API is also expensive since pricing is based on the number of tokens used.

I will ask you questions based on the following context:
— Start of Context —

YOUR DOCUMENT CONTENT

— End of Context—
My question is: “What features do users want to see in the app?”
Copy after login

Since the prompt has a limit on the number of input tags, I came up with an idea to solve the problem: first use an algorithm to search the document and pick out relevant excerpts, and then only use these relevant phrases. The context is passed to the GPT model together with the problem. In the process, a simple and convenient gpt-index library (now renamed LlamaIndex) needs to be used.

In-depth analysis, step by step to build your chatbot using GPT

Extract the relevant parts from the file and feed them back to the prompt.

In the next section, a step-by-step tutorial will be given to build a Q&A chatbot on your own data using LlamaIndex and GPT.

Step by step to build a document Q&A chatbot

In this section, we will use LlamaIndex and GPT (text-davinci-003) to build a Q&A chatbot based on the existing document, so You can ask questions about the document in natural language and get answers from the chatbot.

Prerequisites

Before starting this tutorial, you need to make some preparations:

  • OpenAI API key, which can be found at https://platform.openai.com /account/api-keys found.
  • A file database. LlamaIndex supports many different data sources such as Notion, Google Docs, Asana, etc. In this article only a simple text file will be used for demonstration.
  • A local Python environment or an online Google Colab notebook.

Workflow

The workflow is very simple and only requires a few steps:

  • 1. Use LlamaIndex to create an index for your document data.
  • 2. Query the index using natural language.
  • 3.LlamaIndex will retrieve the relevant part and pass it to the GPT tip.
  • 4. Ask GPT for relevant context and construct a response.

What LlamaIndex does is convert the raw document data into a vector index, which is very efficient for querying. It will use this index to find the most relevant parts based on the similarity of the query and data. It will then insert the retrieved content into the prompt it will send to GPT so that GPT has the context to answer the question.

Setup

You need to install the library first. Just run the following command on Terminal or Google Colab Notebook. These commands will install both LlamaIndex and OpenAI.

!pip install llama-index
!pip install openai
Copy after login

The next step is to import these libraries in python and set the OpenAI API key in a new .py file.

# 导入必要的库
from llama_index import GPTSimpleVectorIndex, Document, SimpleDirectoryReader
import os

os.environ['OPENAI_API_KEY'] = 'sk-YOUR-API-KEY'
Copy after login

Build Index and Save

After you have installed the required libraries and imported them, you will need to build an index of your documents.

To load a document, you can use the SimpleDirectoryReader method provided by LllamaIndex, or you can load it from a string.

# 从一个目录中加载
documents = SimpleDirectoryReader('your_directory').load_data()

# 从字符串中加载,假设将数据保存为字符串text1,text2,...
text_list = [text1, text2, ...]
documents = [Document(t) for t in text_list]
Copy after login

LlamaIndex还提供各种数据连接器,包括Notion、Asana、Google Drive、Obsidian等。可以在https://llamahub.ai/找到可用的数据连接器。

加载完文档后,就可以用以下方法简单地构建索引了:

# 构建一个简单的向量索引
index = GPTSimpleVectorIndex(documents)
Copy after login

如果想保存索引并加载它以便将来使用,可以使用以下方法:

# 将索引保存在`index.json`文件中
index.save_to_disk('index.json')
# 从保存的`index.json`文件中加载索引
index = GPTSimpleVectorIndex.load_from_disk('index.json')
Copy after login

查询索引并获得响应

查询索引很简单:

# 查询索引
response = index.query("What features do users want to see in the app?")
print(response)
Copy after login

In-depth analysis, step by step to build your chatbot using GPT

一个回应的例子。

然后就可以得到答案了。在幕后,LlamaIndex将接收提示,在索引中搜索相关块,并将提示和相关块传递给GPT。

一些高级用法的说明

上面的步骤只是展示了使用LlamaIndex和GPT回答问题的一个非常简单的入门用法。但可以做得比这更多。事实上,可以配置LlamaIndex来使用不同的大型语言模型(LLM),为不同的任务使用不同类型的索引,用一个新的索引来更新现有的索引,等等。如果有兴趣,可以在https://gpt-index.readthedocs.io/en/latest/index.html,阅读他们的文档。

总结

本文中展示了如何结合使用GPT和LlamaIndex来构建一个文档问答聊天机器人。虽然GPT(和其他LLM)本身就很强大,但如果把它与其他工具、数据或流程结合起来,它的力量也会被大大增强。

The above is the detailed content of In-depth analysis, step by step to build your chatbot using GPT. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Step-by-step guide to using Groq Llama 3 70B locally Step-by-step guide to using Groq Llama 3 70B locally Jun 10, 2024 am 09:16 AM

Translator | Bugatti Review | Chonglou This article describes how to use the GroqLPU inference engine to generate ultra-fast responses in JanAI and VSCode. Everyone is working on building better large language models (LLMs), such as Groq focusing on the infrastructure side of AI. Rapid response from these large models is key to ensuring that these large models respond more quickly. This tutorial will introduce the GroqLPU parsing engine and how to access it locally on your laptop using the API and JanAI. This article will also integrate it into VSCode to help us generate code, refactor code, enter documentation and generate test units. This article will create our own artificial intelligence programming assistant for free. Introduction to GroqLPU inference engine Groq

Caltech Chinese use AI to subvert mathematical proofs! Speed ​​up 5 times shocked Tao Zhexuan, 80% of mathematical steps are fully automated Caltech Chinese use AI to subvert mathematical proofs! Speed ​​up 5 times shocked Tao Zhexuan, 80% of mathematical steps are fully automated Apr 23, 2024 pm 03:01 PM

LeanCopilot, this formal mathematics tool that has been praised by many mathematicians such as Terence Tao, has evolved again? Just now, Caltech professor Anima Anandkumar announced that the team released an expanded version of the LeanCopilot paper and updated the code base. Image paper address: https://arxiv.org/pdf/2404.12534.pdf The latest experiments show that this Copilot tool can automate more than 80% of the mathematical proof steps! This record is 2.3 times better than the previous baseline aesop. And, as before, it's open source under the MIT license. In the picture, he is Song Peiyang, a Chinese boy. He is

Plaud launches NotePin AI wearable recorder for $169 Plaud launches NotePin AI wearable recorder for $169 Aug 29, 2024 pm 02:37 PM

Plaud, the company behind the Plaud Note AI Voice Recorder (available on Amazon for $159), has announced a new product. Dubbed the NotePin, the device is described as an AI memory capsule, and like the Humane AI Pin, this is wearable. The NotePin is

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

The second generation Ameca is here! He can communicate with the audience fluently, his facial expressions are more realistic, and he can speak dozens of languages. The second generation Ameca is here! He can communicate with the audience fluently, his facial expressions are more realistic, and he can speak dozens of languages. Mar 04, 2024 am 09:10 AM

The humanoid robot Ameca has been upgraded to the second generation! Recently, at the World Mobile Communications Conference MWC2024, the world's most advanced robot Ameca appeared again. Around the venue, Ameca attracted a large number of spectators. With the blessing of GPT-4, Ameca can respond to various problems in real time. "Let's have a dance." When asked if she had emotions, Ameca responded with a series of facial expressions that looked very lifelike. Just a few days ago, EngineeredArts, the British robotics company behind Ameca, just demonstrated the team’s latest development results. In the video, the robot Ameca has visual capabilities and can see and describe the entire room and specific objects. The most amazing thing is that she can also

GraphRAG enhanced for knowledge graph retrieval (implemented based on Neo4j code) GraphRAG enhanced for knowledge graph retrieval (implemented based on Neo4j code) Jun 12, 2024 am 10:32 AM

Graph Retrieval Enhanced Generation (GraphRAG) is gradually becoming popular and has become a powerful complement to traditional vector search methods. This method takes advantage of the structural characteristics of graph databases to organize data in the form of nodes and relationships, thereby enhancing the depth and contextual relevance of retrieved information. Graphs have natural advantages in representing and storing diverse and interrelated information, and can easily capture complex relationships and properties between different data types. Vector databases are unable to handle this type of structured information, and they focus more on processing unstructured data represented by high-dimensional vectors. In RAG applications, combining structured graph data and unstructured text vector search allows us to enjoy the advantages of both at the same time, which is what this article will discuss. structure

Visualize FAISS vector space and adjust RAG parameters to improve result accuracy Visualize FAISS vector space and adjust RAG parameters to improve result accuracy Mar 01, 2024 pm 09:16 PM

As the performance of open source large-scale language models continues to improve, performance in writing and analyzing code, recommendations, text summarization, and question-answering (QA) pairs has all improved. But when it comes to QA, LLM often falls short on issues related to untrained data, and many internal documents are kept within the company to ensure compliance, trade secrets, or privacy. When these documents are queried, LLM can hallucinate and produce irrelevant, fabricated, or inconsistent content. One possible technique to handle this challenge is Retrieval Augmented Generation (RAG). It involves the process of enhancing responses by referencing authoritative knowledge bases beyond the training data source to improve the quality and accuracy of the generation. The RAG system includes a retrieval system for retrieving relevant document fragments from the corpus

How can AI make robots more autonomous and adaptable? How can AI make robots more autonomous and adaptable? Jun 03, 2024 pm 07:18 PM

In the field of industrial automation technology, there are two recent hot spots that are difficult to ignore: artificial intelligence (AI) and Nvidia. Don’t change the meaning of the original content, fine-tune the content, rewrite the content, don’t continue: “Not only that, the two are closely related, because Nvidia is expanding beyond just its original graphics processing units (GPUs). The technology extends to the field of digital twins and is closely connected to emerging AI technologies. "Recently, NVIDIA has reached cooperation with many industrial companies, including leading industrial automation companies such as Aveva, Rockwell Automation, Siemens and Schneider Electric, as well as Teradyne Robotics and its MiR and Universal Robots companies. Recently,Nvidiahascoll

See all articles