Table of Contents
Business Requirements for Artificial Intelligence Systems
Artificial Intelligence Application Examples:
Home Technology peripherals AI How to identify opportunities for AI in machine vision?

How to identify opportunities for AI in machine vision?

Apr 08, 2023 pm 04:31 PM
AI ai machine vision

Artificial intelligence (AI) is being adopted by industries to harness the power of data and use it to make smarter decisions.

How to identify opportunities for AI in machine vision?

This article will explain how to identify opportunities for AI in machine vision applications.

Business Requirements for Artificial Intelligence Systems

Managing Expectations

AI approaches have specific use cases. After all, it is not a universal solution and cannot solve all problems. Some applications are better suited to traditional computer vision, some may require both, and some may require only artificial intelligence. AI systems are expensive—both in terms of cost and upfront resources required. Open source tools require significant development time, and external tools are often expensive. Additionally, a GPU is often required to achieve adequate performance on the system. Many manufacturers often don't have GPUs or equivalent processing power. Therefore, it is important to determine which applications are well suited for AI with strong business needs.

The importance of visual system settings

Before entering AI, it is recommended to have a solid foundation in visual system settings. However, this is less important for AI, which can often handle worse conditions than traditional systems. All the normal machine vision system rules apply here - good lighting, camera resolution, focal length, etc. If any of these factors aren't up to scratch, it's worth going back and addressing them before delving further into AI. Ensure robust vision system setup for best results.

Reference Human Performance

AI systems are most successful where human performance is strong. Once the system is set up, operators can easily identify/classify images by eye, thus determining whether they are suitable for AI. However, if human performance is insufficient, then the AI ​​model is likely to perform poorly. Using human performance as a reference point for what an AI model can achieve, if an operator can only identify images 70% of the time correctly, it's unlikely that the AI ​​will perform better than that. Therefore, if human performance is not good enough for an application, that performance issue should be addressed first and improved to an acceptable level. Once operators achieve expected performance, AI can be considered.


Time and Resources

Collecting images and training the model requires considerable effort. Often, collecting high-quality images is the hardest part because many manufacturers have very low defect levels. Without data, it can be difficult to train a model for defective parts. Training tools are helpful, providing pre-trained models that require fewer samples to train. Training is an iterative process spanning multiple steps to find the ideal parameters for the model to run. Optimizing a model often requires time and experimentation. Additionally, if new data appears in the field, the model will need to be trained and deployed again.


Artificial Intelligence Application Examples:

One example application of artificial intelligence in machine vision is for final assembly inspection, another is for printed circuit boards or PCB detection.

❶ Final assembly inspection:

Background

Final inspection of parts/products or components is usually performed by operators, or traditional machine vision system, or both. Teledyne cameras will be highlighted here as an example product. The final inspection might check for bent pins, scratches on the surface, proper placement of connectors, alignment of stickers, proper printing of text, distance between mechanisms, and more. Basically, any exceptions that occur during the build process need to be found. But then the list of criteria that needs to be looked up quickly becomes very long. Traditional rule-based systems struggle to handle all corner cases, and training new operators is difficult.

Why AI?

There are often too many rules to determine what a "pass" is. This makes it difficult for traditional machine vision systems to achieve good performance. The alternative is that manual inspection is time-consuming for many companies and difficult for new operators to make some ambiguous judgments. Traditional rule-based systems often do not have adequate performance, and manufacturers rely on operator judgment to help. There may be different lighting conditions, as well as high variations in defect location, shape, and texture. Often, a simple "good/bad" qualitative output is all that's needed. However, this can also be combined with traditional rule-based algorithms if desired.

benefit

With AI, setup is much easier. After collecting a large number of images to train a model, getting a system running usually requires far less development work than a rules-based system, especially using AI tools. With a suitable system, usually using a GPU, the check is much faster, on the order of milliseconds. If provided with good data, AI systems should also perform more reliably than humans and are a good way to standardize inspection procedures. The algorithm is typically trained on data provided by multiple operators, which can reduce human error. This helps mitigate human bias or fatigue that may arise from a single operator. In this example, AI can help manufacturers reduce out-of-box failures and improve inspection quality and throughput.

❷ PCB Inspection:

Background

PCB manufacturers need to inspect their circuit boards for any defects. It may be a bad solder joint, short circuit or other abnormality. AOI (Automated Optical Inspection) machines are usually used. However, since defects vary so much, it is difficult to handle all edge cases. And the performance of rule-based systems is not accurate enough, and manufacturers will ask operators to perform manual inspections, which is time-consuming and expensive.

Why AI?

It is difficult for traditional AOI systems to identify defects. It either overshoots or underperforms, causing a defective PCB to pass or a good PCB to fail. Similar to other situations, there are too many rules to determine a "good board". Depending on the application, AI can be used here to classify defects that vary widely in size and shape, such as short circuits, opens, faulty components, welding defects, etc.

Benefits

With artificial intelligence, manufacturers can improve the accuracy and quality of inspections. This helps reduce the number of defective PCBs passing inspection. It also saves the time and labor costs of any manually assisted inspections and increases throughput by automating tasks that take operators longer to complete.

The above is the detailed content of How to identify opportunities for AI in machine vision?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to dynamically create an object through a string and call its methods in Python? How to dynamically create an object through a string and call its methods in Python? Apr 01, 2025 pm 11:18 PM

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

How to use Go or Rust to call Python scripts to achieve true parallel execution? How to use Go or Rust to call Python scripts to achieve true parallel execution? Apr 01, 2025 pm 11:39 PM

How to use Go or Rust to call Python scripts to achieve true parallel execution? Recently I've been using Python...

How to solve the problem of missing dynamic loading content when obtaining web page data? How to solve the problem of missing dynamic loading content when obtaining web page data? Apr 01, 2025 pm 11:24 PM

Problems and solutions encountered when using the requests library to crawl web page data. When using the requests library to obtain web page data, you sometimes encounter the...

How to operate Zookeeper performance tuning on Debian How to operate Zookeeper performance tuning on Debian Apr 02, 2025 am 07:42 AM

This article describes how to optimize ZooKeeper performance on Debian systems. We will provide advice on hardware, operating system, ZooKeeper configuration and monitoring. 1. Optimize storage media upgrade at the system level: Replacing traditional mechanical hard drives with SSD solid-state drives will significantly improve I/O performance and reduce access latency. Disable swap partitioning: By adjusting kernel parameters, reduce dependence on swap partitions and avoid performance losses caused by frequent memory and disk swaps. Improve file descriptor upper limit: Increase the number of file descriptors allowed to be opened at the same time by the system to avoid resource limitations affecting the processing efficiency of ZooKeeper. 2. ZooKeeper configuration optimization zoo.cfg file configuration

How to do Oracle security settings on Debian How to do Oracle security settings on Debian Apr 02, 2025 am 07:48 AM

To strengthen the security of Oracle database on the Debian system, it requires many aspects to start. The following steps provide a framework for secure configuration: 1. Oracle database installation and initial configuration system preparation: Ensure that the Debian system has been updated to the latest version, the network configuration is correct, and all required software packages are installed. It is recommended to refer to official documents or reliable third-party resources for installation. Users and Groups: Create a dedicated Oracle user group (such as oinstall, dba, backupdba) and set appropriate permissions for it. 2. Security restrictions set resource restrictions: Edit /etc/security/limits.d/30-oracle.conf

In the ChatGPT era, how can the technical Q&A community respond to challenges? In the ChatGPT era, how can the technical Q&A community respond to challenges? Apr 01, 2025 pm 11:51 PM

The technical Q&A community in the ChatGPT era: SegmentFault’s response strategy StackOverflow...

What is the reason why pipeline files cannot be written when using Scapy crawler? What is the reason why pipeline files cannot be written when using Scapy crawler? Apr 02, 2025 am 06:45 AM

Discussion on the reasons why pipeline files cannot be written when using Scapy crawlers When learning and using Scapy crawlers for persistent data storage, you may encounter pipeline files...

See all articles