


Leveraging Artificial Intelligence to Solve Oil and Gas Emissions Challenges
As efforts to combat the climate crisis continue and GCC countries build momentum towards a net-zero carbon emissions future, the top priority for oil and gas companies has never been more important.
From a regional perspective, the oil and gas industry accounts for 9% of the entire oil and gas industry’s greenhouse gas emissions through direct upstream, midstream and downstream (Scope 1), indirect energy (Scope 2) and other indirect emissions (Scope 3) %.
The transition to low-carbon alternative energy sources alone will not be enough to ensure the emissions reductions needed, and a permanent solution to the problem will need to be coupled with an impactful technology unlike any other - artificial intelligence (AI) Combine.
While the net-zero route comes with immediate time constraints, oil and gas companies can adopt a technology-led approach with optimism. After all, the broader GCC is building a lot of momentum following recent groundbreaking actions and announcements.
Saudi Arabia is one of the countries leading the charge on decarbonization, primarily through the Saudi and Middle East Green Initiative, which aims to reduce carbon emissions by 60%, in part using clean hydrogen technology.
Similarly, the UAE recently confirmed plans to invest $163 billion in clean and renewable energy over the next 30 years as part of the country’s 2050 Net Zero strategic plan.
However, for these scenarios to occur as envisaged and for the sustainability framework to finally fulfill its potential, oil and gas companies must first be able to make an impactful contribution.
Addressing Emissions
While businesses can reduce scope 1 and scope 2 emissions through operational and energy efficiency programs, scope 3 emissions from transport, consumption and disposal must also be reduced, which requires optimization and Visibility.
Crucially, most businesses have not yet set out targets to accomplish this, or lack the understanding needed to succeed – ultimately failing to communicate, commit to or deliver on climate requirements.
To advance decarbonization, optimize operations and take advantage of full visibility into the scope of direct and indirect emissions, oil and gas players must embed digitalization and embrace enabling analytics into their organizational culture, processes and practices.
Together with artificial intelligence and machine learning (ML), these tools can enable companies to identify emission sources, thereby reducing energy consumption and optimizing operational energy efficiency. However, companies are tasked with identifying strong emission drivers and uncovering emission reduction initiatives across their entire operations. Methane is a particular area where there are difficulties when it comes to measuring, monitoring and reducing emissions – and AI could drive considerable progress.
AI TO CLIMATE RESCUE
As the foundation of the emissions reduction journey, AI helps incorporate disparate data sources and apply advanced algorithms to predict emissions, reduce levels and monitor success . Integration enables companies to leverage the technology to establish emissions baselines across all three scopes, pursue the most valuable emission reduction initiatives, and have a high degree of assurance about potential impacts.
However, in addition to the critical nature of reducing Scope 1 and 2 emissions, Scope 3 emissions can account for more than 90% of a company’s total greenhouse gas emissions. Additionally, developing a comprehensive Scope 3 emissions baseline and working with suppliers and customers to reduce greenhouse gas emissions is a complex analytical challenge.
Across the oil and gas supply chain, emissions have historically been difficult to measure without set industry standards and competitive benchmarks, while data quality is often substandard and companies lack the capabilities and resources needed to meet Scope 3 footprint requirements. .
Therefore, given the increasing mandatory pressure to drive solutions that are required to succeed is critical, companies must adhere to three emission reduction value chain considerations to drive their decarbonization efforts:
- Baseline: Enterprises should ensure that baselines address operational processes and assets across the entire value chain, including suppliers, customers, production forecasts, production expiration information, and growth opportunities.
- Reduction: Although financial viability is rarely in question, emissions reduction efforts should focus on win-win situations, including increasing production and expected asset life, and taking steps that are economically sustainable and Initiatives that can be deployed at scale.
- Governance and Change Management: The integration of digital emission reduction tools with the overall data architecture is critical for accurate production and financial data visibility and successful decarbonization. In turn, changes in organizational culture and new ways of working can speed up decision-making and simplify greenhouse gas reduction.
As emissions reduction requirements intensify, oil and gas companies must adopt artificial intelligence tools and technologies to enhance relevant strategies and meet their obligations. In the process, newfound capabilities will enhance the collective process of establishing emissions baselines, optimizing operations and accurate reporting, promoting valuable climate change outcomes.
Emission reduction will eventually become an indispensable competitive advantage, and technology will play an important role in a win-win outcome for the relevant players and the planet.
The above is the detailed content of Leveraging Artificial Intelligence to Solve Oil and Gas Emissions Challenges. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G
