Table of Contents
Based on academic conference statistics
Based on institutional statistics
By author statistics
Statistics of papers published as the first author
Based on national statistics
Home Technology peripherals AI 2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Apr 08, 2023 pm 11:41 PM
data academic

2021 is a very productive year for natural language processing (NLP) and machine learning (ML). Now it is time to count the papers in the field of NLP and ML last year.

MAREK REI, a researcher in machine learning and natural language processing from the University of Cambridge, summarized and analyzed classic papers in 2021 and summarized the statistics of ML and NLP publications in 2021. The major conferences and journals in the intelligence industry were analyzed, including ACL, EMNLP, NAACL, EACL, CoNLL, TACL, CL, NeurIPS, AAAI, ICLR, and ICML.

The analysis of the paper is completed using a series of automated tools, which may not be perfect and may contain some flaws and errors. For some reason, some authors started publishing their papers in obfuscated form to prevent any form of content duplication or automated content extraction, and these papers were excluded from the analysis process.

Now let’s take a look at the MAREK REI statistical results.

Based on academic conference statistics

The number of submissions to most conferences continues to rise and break records. ACL appears to be an exception, with AAAI almost leveling off and NeurIPS still growing steadily.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Based on institutional statistics

The leading research institution in the number of papers published in 2021 is undoubtedly Google ; Microsoft ranked second; CMU, Stanford University, Meta and MIT ranked closely behind, and Tsinghua University ranked seventh. Microsoft, CAS, Amazon, Tencent, Cambridge, Washington, and Alibaba stand out with a sizable proportion of papers at NLP conferences, while other top organizations seem to focus primarily on the ML field.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

From the data of 2012-2021, Google published 2170 papers and ranked first, surpassing the 2013 papers published by Microsoft . CMU published 1,881 papers, ranking third.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Most institutions continue to increase their annual publication numbers. The number of papers published by Google used to grow linearly, and now this trend has eased, but it still publishes more papers than before; CMU had a plateau last year, but has made up for it this year; IBM seems to be the only company that publishes slightly more papers Declining institutions.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

By author statistics

Next, let’s take a look at 2021 Researchers who publish the most papers per year. Sergey Levine (Assistant Professor of Electrical Engineering and Computer Science, University of California, Berkeley) published 42 papers, ranking first; Liu Tieyan (Microsoft), Zhou Jie (Tsinghua University), Mohit Bansal (University of North Carolina at Chapel Hill), Graham Neubig (CMU) also ranks relatively high in the number of papers published.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Throughout 2012-2021, the papers published by Sergey Levine ranked first. Last year he ranked sixth. This year It jumped to the first place; Yoshua Bengio (Montreal), Graham Neubig (CMU), Zhang Yue (Westlake University), Zhou Ming (Chief Scientist of Innovation Works), Ting Liu (Harbin Institute of Technology) and others also ranked relatively high in terms of the number of papers they published. .

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Sergey Levine sets a new record by a considerable margin; Mohit Bansal’s number of papers also increases significantly, 2021 Published 31 papers in 2020, the same as Graham Neubig; Yoshua Bengio's number of papers decreased in 2020, but is now rising again.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Statistics of papers published as the first author

Researchers who publish the most papers are usually postdocs and supervisors. In contrast, people who publish more papers as first authors are usually people who do actual research.

Ramit Sawhney (Technical Director of Tower Research Capital) published 9 influential papers in 2021, Jason Wei (Google) and Tiago Pimentel (PhD student at Cambridge University) published respectively 6 influential papers were published.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

From the 2012-2021 distribution, Ivan Vulić (University of Cambridge) and Zeyuan Allen-Zhu (Microsoft) are both first authors Published 24 influential papers, tied for first place; Yi Tay (Google) and Li Jiwei (Shannon Technology) ranked second, having published 23 and 22 influential papers as first authors respectively. papers on NeurIPS; Ilias Diakonikolas (University of Wisconsin-Madison) has published 15 NeurIPS papers as the first author.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Based on national statistics

Number of publications by country in 2021, United States The number of publications is the largest, with China and the UK ranking second and third respectively. In the United States and the United Kingdom, NeurIPS accounts for the largest proportion, while AAAI accounts for the largest proportion in China.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the listThe vertical coordinates from top to bottom are 500, 1000, 1500, 2000, 2500, and so on

Almost all top-ranked countries continue to increase their number of publications and set new records in 2021. The increase was the largest for the United States, further extending its lead.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

In the United States, Google, Microsoft and CMU once again lead the list in terms of number of publications.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

##In China, Tsinghua University, Chinese Academy of Sciences and Peking University published the most papers in 2021.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

##Based on topic correlation statistics

Through visualization, these Organizations are clustered together primarily based on geographic proximity, with companies in the middle.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

We can also visualize the author, but this visualization is a bit difficult to understand.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

Statistics based on keywords

We can also draw drawings containing specific keys word proportion of papers and track changes in this proportion over time.

The word “neural” seems to be on a slight downward trend, although you can still find it in 80% of papers. At the same time, the proportions of "recurrent" and "convolutional" are also declining, and the word "transformer" appears in more than 30% of papers.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

If you look at the word "adversarial" alone, we will find that it is very common in ICLR, and almost half of the papers mention it. The proportion of "adversarial" in ICML and NeurIPS seems to have peaked before, while AAAI has not. 2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list

In the past few years, the term "transformer" has become very popular. It is particularly widely used in NLP papers, with over 50% of published papers containing it, and its popularity is steadily increasing across all ML conferences.

2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list


The above is the detailed content of 2021 ML and NLP academic statistics: Google ranks first, and reinforcement learning expert Sergey Levine tops the list. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation! Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation! Apr 03, 2024 pm 12:04 PM

0.What does this article do? We propose DepthFM: a versatile and fast state-of-the-art generative monocular depth estimation model. In addition to traditional depth estimation tasks, DepthFM also demonstrates state-of-the-art capabilities in downstream tasks such as depth inpainting. DepthFM is efficient and can synthesize depth maps within a few inference steps. Let’s read about this work together ~ 1. Paper information title: DepthFM: FastMonocularDepthEstimationwithFlowMatching Author: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Use ddrescue to recover data on Linux Use ddrescue to recover data on Linux Mar 20, 2024 pm 01:37 PM

DDREASE is a tool for recovering data from file or block devices such as hard drives, SSDs, RAM disks, CDs, DVDs and USB storage devices. It copies data from one block device to another, leaving corrupted data blocks behind and moving only good data blocks. ddreasue is a powerful recovery tool that is fully automated as it does not require any interference during recovery operations. Additionally, thanks to the ddasue map file, it can be stopped and resumed at any time. Other key features of DDREASE are as follows: It does not overwrite recovered data but fills the gaps in case of iterative recovery. However, it can be truncated if the tool is instructed to do so explicitly. Recover data from multiple files or blocks to a single

How to use Excel filter function with multiple conditions How to use Excel filter function with multiple conditions Feb 26, 2024 am 10:19 AM

If you need to know how to use filtering with multiple criteria in Excel, the following tutorial will guide you through the steps to ensure you can filter and sort your data effectively. Excel's filtering function is very powerful and can help you extract the information you need from large amounts of data. This function can filter data according to the conditions you set and display only the parts that meet the conditions, making data management more efficient. By using the filter function, you can quickly find target data, saving time in finding and organizing data. This function can not only be applied to simple data lists, but can also be filtered based on multiple conditions to help you locate the information you need more accurately. Overall, Excel’s filtering function is a very practical

The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks Apr 29, 2024 pm 06:55 PM

I cry to death. The world is madly building big models. The data on the Internet is not enough. It is not enough at all. The training model looks like "The Hunger Games", and AI researchers around the world are worrying about how to feed these data voracious eaters. This problem is particularly prominent in multi-modal tasks. At a time when nothing could be done, a start-up team from the Department of Renmin University of China used its own new model to become the first in China to make "model-generated data feed itself" a reality. Moreover, it is a two-pronged approach on the understanding side and the generation side. Both sides can generate high-quality, multi-modal new data and provide data feedback to the model itself. What is a model? Awaker 1.0, a large multi-modal model that just appeared on the Zhongguancun Forum. Who is the team? Sophon engine. Founded by Gao Yizhao, a doctoral student at Renmin University’s Hillhouse School of Artificial Intelligence.

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Slow Cellular Data Internet Speeds on iPhone: Fixes Slow Cellular Data Internet Speeds on iPhone: Fixes May 03, 2024 pm 09:01 PM

Facing lag, slow mobile data connection on iPhone? Typically, the strength of cellular internet on your phone depends on several factors such as region, cellular network type, roaming type, etc. There are some things you can do to get a faster, more reliable cellular Internet connection. Fix 1 – Force Restart iPhone Sometimes, force restarting your device just resets a lot of things, including the cellular connection. Step 1 – Just press the volume up key once and release. Next, press the Volume Down key and release it again. Step 2 – The next part of the process is to hold the button on the right side. Let the iPhone finish restarting. Enable cellular data and check network speed. Check again Fix 2 – Change data mode While 5G offers better network speeds, it works better when the signal is weaker

The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. May 07, 2024 pm 05:00 PM

Recently, the military circle has been overwhelmed by the news: US military fighter jets can now complete fully automatic air combat using AI. Yes, just recently, the US military’s AI fighter jet was made public for the first time and the mystery was unveiled. The full name of this fighter is the Variable Stability Simulator Test Aircraft (VISTA). It was personally flown by the Secretary of the US Air Force to simulate a one-on-one air battle. On May 2, U.S. Air Force Secretary Frank Kendall took off in an X-62AVISTA at Edwards Air Force Base. Note that during the one-hour flight, all flight actions were completed autonomously by AI! Kendall said - "For the past few decades, we have been thinking about the unlimited potential of autonomous air-to-air combat, but it has always seemed out of reach." However now,

The first robot to autonomously complete human tasks appears, with five fingers that are flexible and fast, and large models support virtual space training The first robot to autonomously complete human tasks appears, with five fingers that are flexible and fast, and large models support virtual space training Mar 11, 2024 pm 12:10 PM

This week, FigureAI, a robotics company invested by OpenAI, Microsoft, Bezos, and Nvidia, announced that it has received nearly $700 million in financing and plans to develop a humanoid robot that can walk independently within the next year. And Tesla’s Optimus Prime has repeatedly received good news. No one doubts that this year will be the year when humanoid robots explode. SanctuaryAI, a Canadian-based robotics company, recently released a new humanoid robot, Phoenix. Officials claim that it can complete many tasks autonomously at the same speed as humans. Pheonix, the world's first robot that can autonomously complete tasks at human speeds, can gently grab, move and elegantly place each object to its left and right sides. It can autonomously identify objects

See all articles