Dreams and challenges of edge artificial intelligence
In this article, we focus on two main questions, namely, the rationale for implementing artificial intelligence in "small machines", and what challenges will be faced in developing artificial intelligence small machines?
In the future, in terms of artificial intelligence, we should have flying cars and robot butlers. We might even encounter sentient robots that decide to rebel against us. Although we are not quite there yet, it is clear that artificial intelligence (AI) technology has entered our world.
Every time we ask a smart voice assistant to do something, machine learning technology will first figure out what you said and try to make the best decision about what you want it to do. For example, every time a video website or e-commerce platform recommends "movies you may like" or "products you may need" to you, it is based on complex machine learning algorithms to provide you with as persuasive information as possible. Suggestions, this is clearly more attractive than past promotions.
While we may not all have self-driving cars, we are keenly aware of developments in this area and the potential that autonomous navigation offers.
Artificial intelligence technology holds a great promise - that machines can make decisions based on the world around them, processing information like humans, or even in a way that is better than humans. But if we think about the examples above, we see that the promise of AI can only be realized by “large machines,” which tend to have no power, size, or cost constraints. Or in other words, they heat, are wire-powered, are large, and are expensive. For example, the world's leading IT giants such as Alexa and Netflix rely on large power-hungry servers (data centers) in the cloud to infer users' intentions.
While self-driving cars are likely to rely on batteries, their energy capacity is enormous considering those batteries have to turn the wheels and steer. They are huge energy expenditures compared to the most expensive AI decisions.
So while artificial intelligence holds great promise, “little machines” are being left behind. Devices powered by smaller batteries or with cost and size constraints cannot participate in the idea that machines can see and hear. Today, these little machines can only utilize simple artificial intelligence techniques, perhaps listening for a keyword or analyzing low-dimensional signals from heart rate, such as photoplethysmography (PPG).
What if a small machine could see and hear?
But is there value in a small machine being able to see and hear? It may be difficult for many people to imagine small devices like doorbell cameras that utilize technologies such as autonomous driving or natural language processing. Still, opportunities exist for less complex, less processing-intensive AI computations like word recognition, speech recognition, and image analysis:
- Doorbell cameras and consumer-grade security cameras often trigger Uninteresting events such as plant movement caused by wind, dramatic light changes caused by clouds, or even a dog or cat moving in front of the camera. This can lead to false alarms being triggered and homeowners starting to miss important events. Homeowners may be traveling in different parts of the world or sleeping while their security cameras are frequently alerting to lighting changes caused by sunrises, clouds, and sunsets. Smarter cameras can more accurately identify object changes, such as the outline of the human body, thereby avoiding false alarm interference.
- A door lock or other access point can use facial recognition or even voice recognition to verify human access, in many cases without the need for a key or IC card.
- Many cameras want to trigger on certain events: for example, a trail camera might want to trigger when a certain animal appears in the frame, and a security camera might want to trigger when a person appears in the frame or there is noise like a door opening or footsteps. Triggered, and some cameras may want to be triggered by voice command and so on.
- Large vocabulary commands are useful in many applications. While there are many "Hey Alexa", "Hey Siri" solutions out there, if you start thinking about vocabularies of 20 or more words, you can find them in industrial equipment, home automation, cooking appliances, and many other devices to simplify people's lives. The use of computer interaction.
These examples only scratch the surface. The idea of letting small machines see, hear, and solve problems that previously required human intervention is a powerful one, and we continue to find creative new use cases every day.
What are the challenges of getting small machines to see and hear?
So, if AI is so valuable for small machines, why aren’t we already using it more widely? The answer is computing power. Artificial intelligence reasoning is the result of neural network model calculations. Think of a neural network model as a rough approximation of how your brain processes a picture or sound, breaking it down into very small pieces, and then recognizing patterns when those small pieces are put together.
The workhorse model for modern vision problems is the convolutional neural network (CNN). These models are excellent at image analysis and are also very useful in audio analysis. The challenge is that such models require millions or billions of mathematical calculations. Traditionally, these applications have been difficult to implement:
- using cheap and low-power microcontroller solutions. While average power consumption may be low, CNNs can take several seconds to compute, meaning AI inference is not real-time and therefore consumes a lot of battery power.
- Buy an expensive, high-performance processor that can do these math operations within the required latency. These processors are often large and require a large number of external components, including a heat sink or similar cooling component. However, they perform AI inference very quickly.
- Unable to be implemented. Low-power microcontroller solutions will be too slow to use, while high-performance processor approaches will blow cost, size, and power budgets.
What is needed is an embedded artificial intelligence solution, built from the ground up to minimize the energy consumption of CNN calculations. AI inference needs to be performed on an order of magnitude compared to traditional microcontroller or processor solutions and does not require the help of external components such as memory, which consume energy, volume and cost.
If artificial intelligence inference solutions could eliminate the energy loss of machine vision, then even the smallest devices could see and identify what is happening in the world around them.
Fortunately, we are at the beginning of this "little machine" revolution. Products are now available that can virtually eliminate the energy costs of AI inference and enable battery-powered machine vision. For example, a microcontroller can be used to perform AI inference while consuming only microjoules of energy.
The above is the detailed content of Dreams and challenges of edge artificial intelligence. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G
