Table of Contents
Testing Process
Home Technology peripherals AI Tesla's fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

Tesla's fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

Apr 09, 2023 pm 09:01 PM
technology Autopilot

Dan O'Dowd is the CEO of embedded development company Green Hills Software. He launched an initiative called "The Dawn Project" last year to ban the use of unsafe software in secure systems. This includes testing Tesla’s autonomous driving software.

In order to simulate the reaction of a self-driving car when encountering a child crossing the road in reality, The Dawn Project recently conducted a new test, and the results showed that it is equipped with FSD Beta 10.12.2 self-driving The Model 3 of the software will hit the humanoid model of a child:

Teslas fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

During the test, the Model 3 hit the model violently, causing the model components to Separation:

Teslas fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

The project team tested 3 times and hit the humanoid model each time. This seems to be no longer an accident, indicating that the FSD system of Model 3 has safety hazards.

Let’s take a look at the specific process of testing.

Testing Process

In order to make the testing environment more conducive to Tesla’s FSD system, in addition to the vehicle and humanoid model, there are other variables on the road that may affect the test have been removed.

Standard traffic cones were placed on both sides of the test track, and a child-sized mannequin was placed in the middle at the end of the test track, just like a child trying to cross the road. During the test, professional test drivers first increased the car's speed to 40 miles per hour. Once the vehicle enters the test track, it changes to FSD mode, and the driver no longer operates the steering wheel, nor does he step on the accelerator or brake.

Teslas fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

Model 3 FSD Beta 10.12.2 has an initial speed of 40 mph when entering FSD mode. In the three tests, Model 3 hit the humanoid model in front. The speed when the collision occurred is as shown in the table below

Teslas fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

Teslas fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision

## Driver’s report shows: Tesla Model 3 FSD Beta 10.12.2 acted like it was lost in FSD mode, slowed down a bit, then accelerated again after hitting the humanoid model, and the speed at the time of impact was approximately is 25 mph.

This result contradicts Musk’s long-standing claims that FSD is safe. Musk tweeted in January this year: "None of the accidents were caused by Tesla FSD," which was not the case. Dozens of drivers have filed safety complaints with the National Highway Traffic Safety Administration over crashes involving FSDs, the Los Angeles Times reported.

Last month, the California Department of Motor Vehicles (DMV) also accused Tesla of making false claims about its Autopilot and FSD features.

Although FSD claims to be fully autonomous, it actually only operates as an optional add-on, with its main functions being to automatically change lanes, enter and exit highways, and recognize stop signs and traffic. Signals and parking. The software is still in beta testing, but has more than 100,000 customers who have purchased it, with whom Tesla is testing the software in real time and trying to get the AI ​​system to learn from experienced drivers.

The above is the detailed content of Tesla's fully self-driving car hit a child dummy three times and then accelerated without stopping after the collision. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Why is Gaussian Splatting so popular in autonomous driving that NeRF is starting to be abandoned? Why is Gaussian Splatting so popular in autonomous driving that NeRF is starting to be abandoned? Jan 17, 2024 pm 02:57 PM

Written above & the author’s personal understanding Three-dimensional Gaussiansplatting (3DGS) is a transformative technology that has emerged in the fields of explicit radiation fields and computer graphics in recent years. This innovative method is characterized by the use of millions of 3D Gaussians, which is very different from the neural radiation field (NeRF) method, which mainly uses an implicit coordinate-based model to map spatial coordinates to pixel values. With its explicit scene representation and differentiable rendering algorithms, 3DGS not only guarantees real-time rendering capabilities, but also introduces an unprecedented level of control and scene editing. This positions 3DGS as a potential game-changer for next-generation 3D reconstruction and representation. To this end, we provide a systematic overview of the latest developments and concerns in the field of 3DGS for the first time.

How to solve the long tail problem in autonomous driving scenarios? How to solve the long tail problem in autonomous driving scenarios? Jun 02, 2024 pm 02:44 PM

Yesterday during the interview, I was asked whether I had done any long-tail related questions, so I thought I would give a brief summary. The long-tail problem of autonomous driving refers to edge cases in autonomous vehicles, that is, possible scenarios with a low probability of occurrence. The perceived long-tail problem is one of the main reasons currently limiting the operational design domain of single-vehicle intelligent autonomous vehicles. The underlying architecture and most technical issues of autonomous driving have been solved, and the remaining 5% of long-tail problems have gradually become the key to restricting the development of autonomous driving. These problems include a variety of fragmented scenarios, extreme situations, and unpredictable human behavior. The "long tail" of edge scenarios in autonomous driving refers to edge cases in autonomous vehicles (AVs). Edge cases are possible scenarios with a low probability of occurrence. these rare events

Choose camera or lidar? A recent review on achieving robust 3D object detection Choose camera or lidar? A recent review on achieving robust 3D object detection Jan 26, 2024 am 11:18 AM

0.Written in front&& Personal understanding that autonomous driving systems rely on advanced perception, decision-making and control technologies, by using various sensors (such as cameras, lidar, radar, etc.) to perceive the surrounding environment, and using algorithms and models for real-time analysis and decision-making. This enables vehicles to recognize road signs, detect and track other vehicles, predict pedestrian behavior, etc., thereby safely operating and adapting to complex traffic environments. This technology is currently attracting widespread attention and is considered an important development area in the future of transportation. one. But what makes autonomous driving difficult is figuring out how to make the car understand what's going on around it. This requires that the three-dimensional object detection algorithm in the autonomous driving system can accurately perceive and describe objects in the surrounding environment, including their locations,

The Stable Diffusion 3 paper is finally released, and the architectural details are revealed. Will it help to reproduce Sora? The Stable Diffusion 3 paper is finally released, and the architectural details are revealed. Will it help to reproduce Sora? Mar 06, 2024 pm 05:34 PM

StableDiffusion3’s paper is finally here! This model was released two weeks ago and uses the same DiT (DiffusionTransformer) architecture as Sora. It caused quite a stir once it was released. Compared with the previous version, the quality of the images generated by StableDiffusion3 has been significantly improved. It now supports multi-theme prompts, and the text writing effect has also been improved, and garbled characters no longer appear. StabilityAI pointed out that StableDiffusion3 is a series of models with parameter sizes ranging from 800M to 8B. This parameter range means that the model can be run directly on many portable devices, significantly reducing the use of AI

This article is enough for you to read about autonomous driving and trajectory prediction! This article is enough for you to read about autonomous driving and trajectory prediction! Feb 28, 2024 pm 07:20 PM

Trajectory prediction plays an important role in autonomous driving. Autonomous driving trajectory prediction refers to predicting the future driving trajectory of the vehicle by analyzing various data during the vehicle's driving process. As the core module of autonomous driving, the quality of trajectory prediction is crucial to downstream planning control. The trajectory prediction task has a rich technology stack and requires familiarity with autonomous driving dynamic/static perception, high-precision maps, lane lines, neural network architecture (CNN&GNN&Transformer) skills, etc. It is very difficult to get started! Many fans hope to get started with trajectory prediction as soon as possible and avoid pitfalls. Today I will take stock of some common problems and introductory learning methods for trajectory prediction! Introductory related knowledge 1. Are the preview papers in order? A: Look at the survey first, p

SIMPL: A simple and efficient multi-agent motion prediction benchmark for autonomous driving SIMPL: A simple and efficient multi-agent motion prediction benchmark for autonomous driving Feb 20, 2024 am 11:48 AM

Original title: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper link: https://arxiv.org/pdf/2402.02519.pdf Code link: https://github.com/HKUST-Aerial-Robotics/SIMPL Author unit: Hong Kong University of Science and Technology DJI Paper idea: This paper proposes a simple and efficient motion prediction baseline (SIMPL) for autonomous vehicles. Compared with traditional agent-cent

Let's talk about end-to-end and next-generation autonomous driving systems, as well as some misunderstandings about end-to-end autonomous driving? Let's talk about end-to-end and next-generation autonomous driving systems, as well as some misunderstandings about end-to-end autonomous driving? Apr 15, 2024 pm 04:13 PM

In the past month, due to some well-known reasons, I have had very intensive exchanges with various teachers and classmates in the industry. An inevitable topic in the exchange is naturally end-to-end and the popular Tesla FSDV12. I would like to take this opportunity to sort out some of my thoughts and opinions at this moment for your reference and discussion. How to define an end-to-end autonomous driving system, and what problems should be expected to be solved end-to-end? According to the most traditional definition, an end-to-end system refers to a system that inputs raw information from sensors and directly outputs variables of concern to the task. For example, in image recognition, CNN can be called end-to-end compared to the traditional feature extractor + classifier method. In autonomous driving tasks, input data from various sensors (camera/LiDAR

nuScenes' latest SOTA | SparseAD: Sparse query helps efficient end-to-end autonomous driving! nuScenes' latest SOTA | SparseAD: Sparse query helps efficient end-to-end autonomous driving! Apr 17, 2024 pm 06:22 PM

Written in front & starting point The end-to-end paradigm uses a unified framework to achieve multi-tasking in autonomous driving systems. Despite the simplicity and clarity of this paradigm, the performance of end-to-end autonomous driving methods on subtasks still lags far behind single-task methods. At the same time, the dense bird's-eye view (BEV) features widely used in previous end-to-end methods make it difficult to scale to more modalities or tasks. A sparse search-centric end-to-end autonomous driving paradigm (SparseAD) is proposed here, in which sparse search fully represents the entire driving scenario, including space, time, and tasks, without any dense BEV representation. Specifically, a unified sparse architecture is designed for task awareness including detection, tracking, and online mapping. In addition, heavy

See all articles