Table of Contents
Sample weights for multiple correlation feedback
Conclusion
Home Technology peripherals AI eBay uses machine learning to improve sale listings

eBay uses machine learning to improve sale listings

Apr 09, 2023 pm 10:31 PM
machine learning data ebay

​Translator | Bugatti

Reviewer | Sun Shujuan

The online marketplace eBay has added additional buying signals to its machine learning model, such as “add to watchlist”, “ Bid" and "Add to Cart" to increase the relevance of recommended ad listings based on the initial product being searched. Chen Xue gave a very detailed introduction in this recent article​​.

eBay uses machine learning to improve sale listings

# eBay’s Promotional Listing Standard (PLS) is a paid option for sellers. Using the PLSIM option, eBay's recommendation engine will recommend sponsored products similar to the one the potential buyer just clicked on. PLSIM pays on a CPA model (sellers only pay eBay when a sale is made), so this is a great incentive to create the most efficient model to promote the best listings. This often works out for sellers, buyers, and eBay.

The PLSIM journey is as follows:

1. User searches for products.

2. The user clicks on the results from the search -> Log in to View Items (VI) page to view the listed items (eBay calls them seed items).

3. Users scroll down the VI page and can see recommended products in PLSIM.

4. The user clicks on the product from PLSIM, performs an action (view, add to shopping cart, buy now, etc.), or view another new set of recommended products.

eBay uses machine learning to improve sale listings

From a machine learning perspective, the PLSIM journey is as follows:

    Retrieve the subset candidate promotion list criteria that are most closely related to the seed item ("Check the complete collection").
  1. Use a trained machine learning sorter to sort the product list in the search set according to the likelihood of purchase.
  2. Reorder the product list based on advertising rates to balance seller sales speed achieved through promotions with recommendation relevance.
Ranking model

The ranking model is based on the following historical data:

    Data of recommended products
  • Recommended products similar to the seed product
  • Context (Country and Product Category)
  • User Personalization Features
eBay uses gradient boosting trees that, for a specific seed item, Sort items based on their relative purchase probability.

From binary feedback to multiple correlation feedback

In the past, purchase probability relied on binary purchase data. It is "relevant" if it is purchased with the seed item, otherwise it is "irrelevant". This is a failed approach, but there are several major areas where it can be optimized:

    False Negatives: Since users typically only purchase one item from the recommended list, the purchase does not occur when the purchase is not made. In some cases, good recommendations may be viewed as bad recommendations, leading to false positives.
  • Few purchases: Compared to other user events, it is becoming challenging to train a model with sufficient number and diversity of purchases to predict the forward class.
  • Missing data: From clicks to add to cart, numerous user actions reveal a wealth of user information and reveal possible outcomes.
To summarize, eBay engineers consider the following user actions, in addition to initial clicks and how to add them to the ranking model:

    Buy Now (only applicable At Buy-It-Now i.e. BIN Listing)
  • Add to Cart (BIN Listing Only)
  • Bid (Best Bid Listing Only)
  • Ask for Bid (Applies to Auction Listings only)
  • Add to Watchlist (Applies to BIN, Best Bid, or Auction Listings)

eBay uses machine learning to improve sale listings

User Interface Example

Relevance Levels of Multiple Relevance Feedback

eBay now knows that purchases are extremely relevant, so it needs to add additional actions, but the new question is: where do these actions fall within the relevance hierarchy?

The image below illustrates how eBay sorts the remaining possible actions - "Bid," "Buy Now," "Add to Watchlist," and "Add to Cart."

eBay uses machine learning to improve sale listings

In the historical training data for seed items, each potential item is labeled with a relevance level by the following scale.

eBay uses machine learning to improve sale listings

Marked result is that during training, the sorter penalizes incorrectly ordered purchases more severely than incorrectly ordered "Buy Now" , and so on.

Sample weights for multiple correlation feedback

Gradient boosted trees support multiple labels to capture a range of correlations, but there is no direct way to achieve the magnitude of the correlation.

eBay had to run the tests iteratively until it came up with numbers that made the model work. The researchers added additional weights (called "sample weights") that were fed into the pairwise loss function. They optimized the hyperparameter tuning and ran it for 25 iterations before arriving at the best sample weights - "Add to Watchlist" (6), "Add to Cart" (15), "Bid" (38 ), "Buy Now" (8) and "Buy" (15). Without sample weights, the new model will perform worse. With sample weights, the new model outperforms the binary model.

They tried adding only clicks as additional relevant feedback and applied the tuned hyperparameter "Purchase" sample weight of 150. Offline results are also shown below, where "BOWC" stands for Buy Now, Make a Bid, Add to Watchlist, and Add to Cart actions. Purchase ranking reflects the average ranking of items purchased. The smaller the better.

eBay uses machine learning to improve sale listings

Conclusion

The trained model has a total of more than 2000 instances. A/B testing is conducted in two stages. The first phase, which only included additional select tags and showed a 2.97% increase in purchase volume on the eBay mobile app and a 2.66% increase in ad revenue, was deemed successful enough to move the model into global production.

The second phase added more actions to the model, such as "Add to Watchlist", "Add to Cart", "Bid" and "Buy Now", and A/B testing showed better customer engagement (e.g. more clicks and BWC).

eBay uses machine learning to improve sale listings

Original title: EBay Uses Machine Learning to Refine Promoted Listings​, Author: Jessica Wachtel​

The above is the detailed content of eBay uses machine learning to improve sale listings. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Slow Cellular Data Internet Speeds on iPhone: Fixes Slow Cellular Data Internet Speeds on iPhone: Fixes May 03, 2024 pm 09:01 PM

Facing lag, slow mobile data connection on iPhone? Typically, the strength of cellular internet on your phone depends on several factors such as region, cellular network type, roaming type, etc. There are some things you can do to get a faster, more reliable cellular Internet connection. Fix 1 – Force Restart iPhone Sometimes, force restarting your device just resets a lot of things, including the cellular connection. Step 1 – Just press the volume up key once and release. Next, press the Volume Down key and release it again. Step 2 – The next part of the process is to hold the button on the right side. Let the iPhone finish restarting. Enable cellular data and check network speed. Check again Fix 2 – Change data mode While 5G offers better network speeds, it works better when the signal is weaker

The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks Apr 29, 2024 pm 06:55 PM

I cry to death. The world is madly building big models. The data on the Internet is not enough. It is not enough at all. The training model looks like "The Hunger Games", and AI researchers around the world are worrying about how to feed these data voracious eaters. This problem is particularly prominent in multi-modal tasks. At a time when nothing could be done, a start-up team from the Department of Renmin University of China used its own new model to become the first in China to make "model-generated data feed itself" a reality. Moreover, it is a two-pronged approach on the understanding side and the generation side. Both sides can generate high-quality, multi-modal new data and provide data feedback to the model itself. What is a model? Awaker 1.0, a large multi-modal model that just appeared on the Zhongguancun Forum. Who is the team? Sophon engine. Founded by Gao Yizhao, a doctoral student at Renmin University’s Hillhouse School of Artificial Intelligence.

The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. May 07, 2024 pm 05:00 PM

Recently, the military circle has been overwhelmed by the news: US military fighter jets can now complete fully automatic air combat using AI. Yes, just recently, the US military’s AI fighter jet was made public for the first time and the mystery was unveiled. The full name of this fighter is the Variable Stability Simulator Test Aircraft (VISTA). It was personally flown by the Secretary of the US Air Force to simulate a one-on-one air battle. On May 2, U.S. Air Force Secretary Frank Kendall took off in an X-62AVISTA at Edwards Air Force Base. Note that during the one-hour flight, all flight actions were completed autonomously by AI! Kendall said - "For the past few decades, we have been thinking about the unlimited potential of autonomous air-to-air combat, but it has always seemed out of reach." However now,

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! May 06, 2024 pm 04:13 PM

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Outlook on future trends of Golang technology in machine learning Outlook on future trends of Golang technology in machine learning May 08, 2024 am 10:15 AM

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.

See all articles