Table of Contents
time module
%%time Magic command
line_profiler
memory_profiler
Summary
Home Backend Development Python Tutorial Monitor Python memory usage and code execution time

Monitor Python memory usage and code execution time

Apr 10, 2023 pm 02:56 PM
python Memory develop

Which parts of my code take the longest to run and use the most memory? How can I find areas for improvement?

I’m pretty sure most of us would like to know this during development, and in this article I’ve summarized some ways to monitor the time and memory usage of your Python code.

Monitor Python memory usage and code execution time

This article will introduce 4 methods. The first 3 methods provide time information, and the fourth method can obtain memory usage.

  • time module
  • %%time magic command
  • line_profiler
  • memory_profiler

time module

This is the simplest and most straightforward (but requires manual development) method of calculating how long it takes for your code to run. His logic is also very simple: record the time before and after the code is run, and calculate the difference between the times. This can be achieved as follows:

import time
 
 start_time = time.time()
 result = 5+2
 end_time = time.time()
 
 print('Time taken = {} sec'.format(end_time - start_time))
Copy after login

The following example shows the difference in time between a for loop and a list comprehension:

import time
 
 # for loop vs. list comp
 list_comp_start_time = time.time()
 result = [i for i in range(0,1000000)]
 list_comp_end_time = time.time()
 print('Time taken for list comp = {} sec'.format(list_comp_end_time - list_comp_start_time))
 
 result=[]
 for_loop_start_time = time.time()
 for i in range(0,1000000):
 result.append(i)
 for_loop_end_time = time.time()
 print('Time taken for for-loop = {} sec'.format(for_loop_end_time - for_loop_start_time))
 
 list_comp_time = list_comp_end_time - list_comp_start_time
 for_loop_time = for_loop_end_time - for_loop_start_time
 print('Difference = {} %'.format((for_loop_time - list_comp_time)/list_comp_time * 100))
Copy after login

We all know that for will be slower.

Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %
Copy after login

%%time Magic command

Magic command is a convenient command built into the IPython kernel that can easily perform specific tasks. Generally, it is used in jupyter notebook.

Add %%time at the beginning of the cell. After the cell execution is completed, the time spent on the cell execution will be output.

%%time
 def convert_cms(cm, unit='m'):
 '''
Function to convert cm to m or feet
'''
 if unit == 'm':
 return cm/100
 return cm/30.48
 
 convert_cms(1000)
Copy after login

The results are as follows:

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0
Copy after login

The CPU times here are the actual time spent by the CPU processing the code, and the Wall time is the real time that the event has passed. At the method entrance and The time between method exits.

line_profiler

The first two methods only provide the total time required to execute the method. Through the time analyzer we can get the running time of each code in the function.

Here we need to use the line_profiler package. Use pip install line_profiler.

import line_profiler
 
 def convert_cms(cm, unit='m'):
 '''
Function to convert cm to m or feet
'''
 if unit == 'm':
 return cm/100
 return cm/30.48
 
 # Load the profiler
 %load_ext line_profiler
 
 # Use the profiler's magic to call the method
 %lprun -f convert_cms convert_cms(1000, 'f')
Copy after login

The output results are as follows:

Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line # Hits Time Per Hit % Time Line Contents
 ==============================================================
1 def convert_cms(cm, unit='m'):
2 '''
3 Function to convert cm to m or feet
4 '''
5 1 2.0 2.0 50.0 if unit == 'm':
6 return cm/100
7 1 2.0 2.0 50.0 return cm/30.48
Copy after login

You can see that line_profiler provides detailed information about the time spent on each line of code.

  • Line Contents: The code being run
  • Hits: The number of times the line was executed
  • Time: The total time spent (i.e. the number of hits x the number of hits per time )
  • Per Hit: The time it takes for an execution, that is, Time = Hits X Per Hit
  • % Time: The proportion of the total time

You can see Yes, each line of code analyzes the time in detail, which is quite helpful for us to analyze the time.

memory_profiler

Similar to line_profiler, memory_profiler provides line-by-line memory usage of the code.

To install it you need to use pip install memory_profiler. Here we monitor the memory usage of the convert_cms_f function.

from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')
Copy after login

The convert_cms_f function is defined in a separate file and then imported. The results are as follows:

Line # Mem usage Increment Occurrences Line Contents
 =============================================================
1 63.7 MiB 63.7 MiB 1 def convert_cms_f(cm, unit='m'):
2 '''
3 Function to convert cm to m or feet
4 '''
5 63.7 MiB 0.0 MiB 1 if unit == 'm':
6 return cm/100
7 63.7 MiB 0.0 MiB 1 return cm/30.48
Copy after login

memory_profiler provides detailed insight into the memory usage of each line of code.

1 MiB (MebiByte) here is almost equal to 1MB. 1 MiB = 1.048576 1MB

But memory_profiler also has some disadvantages: it queries the operating system memory, so the results may be slightly different from the python interpreter. If you run %mprun multiple times in a session, you may notice an increase. The measurement column reports 0.0 MiB for all code lines. This is due to the limitations of magic commands.

Although memory_profiler has some problems, it allows us to clearly understand memory usage and is a very useful tool for development.

Summary

Although Python is not a language known for its execution efficiency, these commands are still very helpful to us in some special cases.


The above is the detailed content of Monitor Python memory usage and code execution time. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to open xml format How to open xml format Apr 02, 2025 pm 09:00 PM

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

Is there a free XML to PDF tool for mobile phones? Is there a free XML to PDF tool for mobile phones? Apr 02, 2025 pm 09:12 PM

There is no simple and direct free XML to PDF tool on mobile. The required data visualization process involves complex data understanding and rendering, and most of the so-called "free" tools on the market have poor experience. It is recommended to use computer-side tools or use cloud services, or develop apps yourself to obtain more reliable conversion effects.

Is there any mobile app that can convert XML into PDF? Is there any mobile app that can convert XML into PDF? Apr 02, 2025 pm 08:54 PM

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages ​​and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

How to convert XML to PDF on your phone? How to convert XML to PDF on your phone? Apr 02, 2025 pm 10:18 PM

It is not easy to convert XML to PDF directly on your phone, but it can be achieved with the help of cloud services. It is recommended to use a lightweight mobile app to upload XML files and receive generated PDFs, and convert them with cloud APIs. Cloud APIs use serverless computing services, and choosing the right platform is crucial. Complexity, error handling, security, and optimization strategies need to be considered when handling XML parsing and PDF generation. The entire process requires the front-end app and the back-end API to work together, and it requires some understanding of a variety of technologies.

Does XML modification require programming? Does XML modification require programming? Apr 02, 2025 pm 06:51 PM

Modifying XML content requires programming, because it requires accurate finding of the target nodes to add, delete, modify and check. The programming language has corresponding libraries to process XML and provides APIs to perform safe, efficient and controllable operations like operating databases.

Recommended XML formatting tool Recommended XML formatting tool Apr 02, 2025 pm 09:03 PM

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

How to beautify the XML format How to beautify the XML format Apr 02, 2025 pm 09:57 PM

XML beautification is essentially improving its readability, including reasonable indentation, line breaks and tag organization. The principle is to traverse the XML tree, add indentation according to the level, and handle empty tags and tags containing text. Python's xml.etree.ElementTree library provides a convenient pretty_xml() function that can implement the above beautification process.

How to convert XML files to PDF on your phone? How to convert XML files to PDF on your phone? Apr 02, 2025 pm 10:12 PM

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

See all articles