Successful AI requires the right data architecture
For companies that hope to master artificial intelligence, artificial intelligence (AI) is expected to save costs, gain competitive advantages, and gain a firm foothold in the future business battlefield. But while the rate of AI adoption continues to rise, the level of investment is often not proportional to the returns. There are many keys to success in artificial intelligence, including the right data architecture.
#Currently, only 26% of AI initiatives are widely put into production by organizations. Unfortunately, this means that many companies spend a lot of time on AI deployment without getting actual ROI.
All companies must behave like a technology company
At the same time, in a world where every company must behave like a technology company to stay ahead, technology teams, engineering and There is increasing pressure on IT leaders to leverage data for business growth. Especially as cloud storage spending increases, enterprises want to improve efficiency and maximize the ROI of storing more expensive data. But unfortunately, they didn't have enough time.
In order to meet the demand for fast results, mapping data architecture can no longer continue without a clear goal. Technology leaders must build data architecture with AI as the primary goal.
If they don't, they'll find themselves reworking it later to fix it. In today's business, data architecture should move toward a clear outcome—and that outcome should include AI applications with clear benefits to end users. This is key to setting your business up for future success.
Three Essential Elements of a Successful Data Architecture
Several core principles will help you design a data architecture that can support AI applications that deliver ROI. As you build, format, and organize your data, consider the following points as a guide to check in with yourself:
Work toward a goal
When building and developing your data architecture, Always focusing on business results is the fundamental rule. It’s especially recommended to review the company’s near-term goals and adjust your data strategy accordingly.
For example, if your business strategy is to achieve $30 million in revenue by the end of the year, figure out how to leverage data to drive that goal. Break down more important goals into smaller goals and then work toward those goals.
Design to create value quickly
While setting clear goals is key, the final solution must always be agile enough to adapt to changing business needs. For example, a small-scale project may grow into a multi-channel project, and you need to take this into account when building. Fixed modeling and fixed rules just create more work.
Any architecture designed should be able to accommodate more of the data available and leverage it to achieve the company's latest goals. Automate as much as possible. This will quickly and iteratively leverage data strategies to create valuable business impact.
For example, if you know you need to submit monthly reports, automate the process from the beginning. This way, you will only spend some time on this process in the first month. The resulting impact will continue to be effective and positive.
Know How to Test Success
To stay on the right track, you must know whether your data architecture is performing effectively. Data architecture works when it can both support AI operations and deliver usable, relevant data to every employee in the business. Keeping an eye on these will help ensure your data strategy is fit for purpose and into the future.
As technology continues to evolve, businesses must keep up or be left behind. This means tech leaders staying connected to their teams and allowing them to bring new innovations to the boardroom for discussion.
The above is the detailed content of Successful AI requires the right data architecture. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
