Get data from the internet using Excel and Python

WBOY
Release: 2023-04-11 18:28:04
forward
1189 people have browsed it

Today’s article is mainly divided into two parts. One is to build a data website through Python, and the other is to use Excel and Python to obtain data from the written Web website.

1. Construct test website data

Build a Web website and a Web API service through the Python Flask Web framework.

1. Build a Web website

Create a new Python script named "5-5-WebTable.py" to create a simple web page containing a table. If the reader is not interested in the construction method, you can skip the following code and directly execute the script "5-5-WebTable.py" to open the website.

(1) Install the flask package.

pip install flask
Copy after login

(2) Build a web page containing a table.

from flask import Flask

app = Flask(__name__)# 创建Falsk Web应用实例

# 将路由“/”映射到table_info函数,函数返回HTML代码
@app.route('/')
def table_info():

return """<h2>HTML表格实例,用于提供给Excel和Python读取</h2>
<table border="1">
<caption>用户信息表</caption>
<tbody><tr>
<th>姓名</th>
<th>性别</th>
<th>年龄</th>
</tr>
<tr>
<td>小米</td>
<td>女</td>
<td>22</td>
</tr>
……….
</tbody></table>"""

if __name__ == '__main__':
app.debug = True# 启用调试模式
app.run()# 运行,网站端口默认为5000
Copy after login

Start the website through the command "python ./5-5-WebTable.py", then enter http://127.0.0.1:5000/ in the browser, and the web page content shown in Figure 1 will appear. .

Get data from the internet using Excel and Python

Figure 1 Test website built using Flask

2. Build a Web API service

Create a new website named "5-5- WebAPI.py" Python script that uses the flask_restplus package to build a Web API service. If the reader is not interested in the construction method, you can skip the following code and directly execute the script "5-5-WebAPI.py" to open the Web API service.

(1) Install the flask_restplus package.

pip install flask-restplus
Copy after login

(2) Import necessary libraries and initialize application objects.

from flask import Flask
# Api类是Web API应用的入口,需要用Flask应用程序初始化
from flask_restplus import Api

# Resource类是HTTP请求的资源的基类
from flask_restplus import Resource

# fields类用于定义数据的类型和格式
from flask_restplus import fields

app = Flask(__name__)# 创建Falsk Web应用实例

# 在flask应用的基础上构建flask_restplusApi对象
api = Api(app, version='1.0',
title='Excel集成Python数据分析-测试用WebAPI',
description='测试用WebAPI', )

# 使用namespace函数生成命名空间,用于为资源分组
ns = api.namespace('ExcelPythonTest', description='Excel与Python Web API测试')
# 使用api.model函数生成模型对象
todo = api.model('task_model', {
'id': fields.Integer(readonly=True,
 description='ETL任务唯一标识'),
'task': fields.String(required=True,
description='ETL任务详情')
})
Copy after login

(3) Web API data operation class, including methods such as add, delete, modify, and query.

class TodoDAO(object):

def __init__(self):
self.counter = 0
self.todos = []

def get(self, id):
for todo in self.todos:
if todo['id'] == id:
return todo
api.abort(404, "ETL任务 {} 不存在".format(id))

def create(self, data):
todo = data
todo['id'] = self.counter = self.counter + 1
self.todos.append(todo)
return todo

# 实例化数据操作,创建3条测试数据
DAO = TodoDAO()
DAO.create({'task': 'ETL-抽取数据操作'})
DAO.create({'task': 'ETL-数据清洗转换'})
DAO.create({'task': 'ETL-数据加载操作'})
Copy after login

(4) Build the routing mapping of Web API.

The HTTP resource request class inherits from the Resource class, and then maps to different routes, while specifying the HTTP method that can be used.

@ns.route('/')# 路由“/”对应的资源类为TodoList,可使用get方法和post方法进行请求
class TodoList(Resource):
@ns.doc('list_todos')# @doc装饰器对应API文档的信息
@ns.marshal_list_with(todo)# @marshal_xxx装饰器对模型数据进行格式转换与输出
def get(self):# 定义get方法获取所有的任务信息
return DAO.todos

@ns.doc('create_todo')
@ns.expect(todo)
@ns.marshal_with(todo, code=201)
def post(self):# 定义post方法获取所有的任务信息
return DAO.create(api.payload), 201

# 路由/<int:id>对应的资源类为Todo,可使用get、delete、put方法进行请求
@ns.route('/<int:id>')
@ns.response(404, '未发现相关ETL任务')
@ns.param('id', 'ETL任务ID号')
class Todo(Resource):
@ns.doc('get_todo')
@ns.marshal_with(todo)
def get(self, id):
return DAO.get(id)

@ns.doc('delete_todo')
@ns.response(204, 'ETL任务已经删除')
def delete(self, id):
DAO.delete(id)
return '', 204

@ns.expect(todo)
@ns.marshal_with(todo)
def put(self, id):
return DAO.update(id, api.payload)

if __name__ == '__main__':
app.run(debug=True, port=8000)# 启动Web API服务,端口为8000
Copy after login

(4) Start the Web API service.

Start the Web API service through the command "python ./5-5-WebAPI.py" and enter "http://127.0.0.1:8000/" in the browser, as shown in Figure 5-23 List of Web API service request methods shown.

Get data from the internet using Excel and Python

Figure 2 List of WebAPI service request methods

2. Capturing web page data

Excel can be accessed through the "Data" tab The "from website" function captures web page data. Python can use the requests library, Beautiful Soup package, and Scrapy framework to crawl web page data.

1. Capture through Excel

Click "Data" → "From other sources" → "From website" function. There are limitations to the web page data that Excel can read: dynamic web page data cannot be automatically recognized, and non-table data cannot be automatically recognized.

(1) Click the "Data" → "From Other Sources" → "From Website" function.

(2) Make sure that the Web website written in Section 5.5.1 has been opened.

(3) Enter the website URL address "http://127.0.0.1:5000/"

Click the "Advanced" button to configure more detailed HTTP request information, and then click " OK" button, as shown in Figure 3.

Get data from the internet using Excel and Python

Figure 3 Configure the URL of the website to be read

(4) Select import data in the "Navigator" window.

As shown in Figure 4, Excel automatically recognizes the table data in the web page, select the table name and click the "Load" button.

Get data from the internet using Excel and Python

Figure 4 Excel automatically recognizes table data in web pages

2. Use Python to capture

The following demonstrates using the requests library to capture The data in the entire web page is then used to parse the web page using Beautiful Soup. Readers can refer to the code material file "5-5-web.ipynb" in this book to learn.

(1) Read web page data through requests.

import requests #导入requests包
url ='http://127.0.0.1:5000/'

strhtml= requests.get(url) #使用get方法请求网页数据
Copy after login

(2) Parse web pages through Beautiful Soup.

from bs4 import BeautifulSoup

soup = BeautifulSoup(strhtml.text)# 将网页内容作为参数,创建soup对象
table = soup.find('table')# 查找网页中的table元素
table_body = table.find('tbody')# 查找table元素中的tbody元素
data = []
rows = table_body.find_all('tr')# 查找表中的所有tr元素

for row in rows:# 遍历数据
cols = row.find_all('td')
cols = [ele.text.strip() for ele in cols]
data.append([ele for ele in cols if ele])
# 结果输出:[[],
['小米', '女', '22'],['小明','男','23'],……
Copy after login

3. Call the Web API service

Excel can call the Web API service through the "Self Website" function under the "Data" tab. Python can use the requests library, Beautiful Soup package, and Scrapy framework to call Web API to obtain data.

1. Use Excel to call

(1) Make sure that the Web API service written in Section 5.5.1 has been started.

(2) Enter the URL corresponding to the Web API method: http://127.0.0.1:8000/ExcelPythonTest/.

(3) Process the returned data.

After calling the Web API service, the data is returned in JSON format, and the JSON data is processed according to the method introduced in Section 5.4.3.

2. Use Python to call

Use the requests library to call the Web API method, and then process the returned JSON data. Readers can refer to the code material file "5-5-api.ipynb" in this book "To learn.

import requests#导入requests包
url ='http://127.0.0.1:8000/ExcelPythonTest/'

strhtml= requests.get(url)#使用get方法获取网页数据

import pandas as pd

frame= pd.read_json(strhtml.text)#使用Pandas包中的read_json函数
print(frame)
#结果输出:
id task
0 1 ETL-抽取数据操作
1 2 ETL-数据清洗转换
2 3 ETL-数据加载操作
Copy after login

4、两种方法对比

表1所示为Excel和Python抓取互联网数据方法的对比。需要注意Excel从互联网抓取数据的功能并不完善。

表1   Excel和Python抓取互联网数据方法对比

Get data from the internet using Excel and Python

The above is the detailed content of Get data from the internet using Excel and Python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:51cto.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!