Table of Contents
Technology companies keep up with the trend of artificial intelligence
Why Artificial Intelligence Needs New Data Infrastructure
Home Technology peripherals AI What data center infrastructure needs to be upgraded for artificial intelligence?

What data center infrastructure needs to be upgraded for artificial intelligence?

Apr 11, 2023 pm 09:49 PM
AI data center

What data center infrastructure needs to be upgraded for artificial intelligence?

Current data infrastructure is already capable of handling the influx of cloud computing, 5G networks and video streaming, but this may not be enough to support the latest digital transformation brought about by the full application of artificial intelligence .

Instead, digital infrastructure for AI may require an entirely separate cloud computing framework. This new framework requires redefining the existing data center network based on the location of specific data center clusters and the capabilities they have.

Technology companies keep up with the trend of artificial intelligence

The recently discussed ChatGPTAI artificial intelligence speech synthesizer has more than 1 million users and has received a US$10 billion investment from Microsoft. Additionally, Amazon Web Services partnered with StabilityAI in November, and Google created a ChatGPT-like system called Lamda. Meanwhile, Meta recently announced a pause in its data center construction so that it can reconfigure its server farms to meet the data processing requirements of AI.

The data processing needs of the artificial intelligence platform have grown to such an extent that OpenAI, the creator of ChatGPT, will not be able to continue operating the platform without Microsoft's upcoming upgrade of the Azure cloud platform.

Why Artificial Intelligence Needs New Data Infrastructure

The “brain” of an AI platform like ChatGPT operates through two different “hemispheres” or “lobes”, with the former extracting satisfying All the data required for user content requests, which power the generation platform to answer users’ questions in a more “human” way as soon as they are asked.

Training Leaf will require a lot of "computing power" to process all the data points needed to generate all the content ChatGPT creates. Essentially, the training leaf extracts data points and reorganizes them within the model. This process happens iteratively, and each time the AI ​​entity understands better, it teaches itself how to absorb the information and communicate what it learns like a human would.

Although it is an interesting process, training Ye requires not only powerful computing power, but also state-of-the-art graphics processing unit (GPU) semiconductors to achieve maximum functionality. Additionally, any infrastructure focused on “training” an AI platform requires large amounts of electricity, so data centers must be located near renewable energy sources. A new liquid cooling system and redesigned backup power and generator systems also had to be installed.

As for the other half of the AI ​​platform’s brain, the inference leaf, which is responsible for answering questions within seconds of users asking them, has its own set of needs that cannot be met by current data infrastructure. The good news is that currently connected data center networks can accommodate this demand, but facilities must be upgraded to handle the massive processing power required. These facilities must also be located near the substation.

The largest cloud computing providers are now providing data processing capabilities to artificial intelligence startups in need. They are willing to offer this service because they see AI startups as potential long-term customers.

And there is a proxy war going on among large cloud computing companies. They are really the only ones capable of building truly large-scale AI platforms with countless parameters.

The above is the detailed content of What data center infrastructure needs to be upgraded for artificial intelligence?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Samsung introduces BM1743 data center-grade SSD: equipped with v7 QLC V-NAND and supports PCIe 5.0 Samsung introduces BM1743 data center-grade SSD: equipped with v7 QLC V-NAND and supports PCIe 5.0 Jun 18, 2024 pm 04:15 PM

According to news from this website on June 18, Samsung Semiconductor recently introduced its next-generation data center-grade solid-state drive BM1743 equipped with its latest QLC flash memory (v7) on its technology blog. ▲Samsung QLC data center-grade solid-state drive BM1743 According to TrendForce in April, in the field of QLC data center-grade solid-state drives, only Samsung and Solidigm, a subsidiary of SK Hynix, had passed the enterprise customer verification at that time. Compared with the previous generation v5QLCV-NAND (note on this site: Samsung v6V-NAND does not have QLC products), Samsung v7QLCV-NAND flash memory has almost doubled the number of stacking layers, and the storage density has also been greatly improved. At the same time, the smoothness of v7QLCV-NAND

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

See all articles