Home > Technology peripherals > AI > 11 common classification feature encoding techniques

11 common classification feature encoding techniques

WBOY
Release: 2023-04-12 12:16:09
forward
1773 people have browsed it

The machine learning algorithm only accepts numerical input, so if we encounter categorical features, we will encode the categorical features. This article summarizes 11 common categorical variable encoding methods.

11 common classification feature encoding techniques

1. ONE HOT ENCODING

The most popular and commonly used encoding method is One Hot Enoding. A single variable with n observations and d distinct values ​​is converted into d binary variables with n observations, each binary variable is identified by a bit (0, 1).

For example:

11 common classification feature encoding techniques

After encoding

11 common classification feature encoding techniques

##The simplest implementation is to use pandas' get_dummies

new_df=pd.get_dummies(columns=[‘Sex’], data=df)
Copy after login

2. Label Encoding

Assign a uniquely identified integer to the categorical data variable. This method is very simple, but can cause problems for categorical variables that represent unordered data. For example: tags with high values ​​can have higher priority than tags with low values.

For example, in the above data, we got the following results after encoding:

11 common classification feature encoding techniques

sklearn’s LabelEncoder can be directly converted:

from sklearn.preprocessing import LabelEncoder
 le=LabelEncoder()
 df[‘Sex’]=le.fit_transform(df[‘Sex’])
Copy after login

3. Label Binarizer

LabelBinarizer is a tool class used to create a label matrix from a multi-category list. It will convert a list into a matrix with exactly the same number of columns as the number of unique values ​​in the input set.

For example, this data

11 common classification feature encoding techniques

The converted result is

##

from sklearn.preprocessing import LabelBinarizer
 lb = LabelBinarizer()
 new_df[‘Sex’]=lb.fit_transform(df[‘Sex’])
Copy after login
11 common classification feature encoding techniques4. Leave one out Encoding

When Leave One Out is encoded, all records with the same value for the target categorical feature variable are averaged to determine the mean of the target variable. The encoding algorithm differs slightly between the training and test datasets. Because the feature records considered for classification are excluded from the training data set, it is called "Leave One Out".

Specific values ​​of specific categorical variables are coded as follows.

ci = (Σj != i tj / (n — 1 + R)) x (1 + εi) where
 ci = encoded value for ith record
 tj = target variable value for jth record
 n = number of records with the same categorical variable value
 R = regularization factor
 εi = zero mean random variable with normal distribution N(0, s)
Copy after login

For example, the following data:

11 common classification feature encoding techniquesAfter encoding:

11 common classification feature encoding techniquesTo demonstrate this encoding process , we create the data set:

import pandas as pd;
 data = [[‘1’, 120], [‘2’, 120], [‘3’, 140],
 [‘2’, 100], [‘3’, 70], [‘1’, 100],[‘2’, 60],
 [‘3’, 110], [‘1’, 100],[‘3’, 70] ]
 df = pd.DataFrame(data, columns = [‘Dept’,’Yearly Salary’])
Copy after login

and then encode:

import category_encoders as ce
 tenc=ce.TargetEncoder()
 df_dep=tenc.fit_transform(df[‘Dept’],df[‘Yearly Salary’])
 df_dep=df_dep.rename({‘Dept’:’Value’}, axis=1)
 df_new = df.join(df_dep)
Copy after login

This way we get the above result.

5. Hashing

When using the hash function, the string will be converted into a unique hash value. Because it uses very little memory and can handle more categorical data. Feature hashing is an effective method for managing sparse high-dimensional features in machine learning. It is suitable for online learning scenarios and has the characteristics of fast, simple, efficient and fast.

For example, the following data:

11 common classification feature encoding techniquesAfter encoding

11 common classification feature encoding techniquesThe code is as follows:

from sklearn.feature_extraction import FeatureHasher
 # n_features contains the number of bits you want in your hash value.
 h = FeatureHasher(n_features = 3, input_type =’string’)
 # transforming the column after fitting
 hashed_Feature = h.fit_transform(df[‘nom_0’])
 hashed_Feature = hashed_Feature.toarray()
 df = pd.concat([df, pd.DataFrame(hashed_Feature)], axis = 1)
 df.head(10)
Copy after login

6. Weight of Evidence Encoding

(WoE) The main goal of development is to create a predictive model for assessing loan default risk in the credit and financial industry. The extent to which evidence supports or refutes a theory depends on its weight of evidence, or WOE.

11 common classification feature encoding techniquesIf P(Goods) / P(Bads) = 1, then WoE is 0. If the outcome for this group is random, then P(Bads) > P(Goods), the odds ratio is 1, and the weight of evidence (WoE) is 0. If P(Goods) > P(bad) in a group, then WoE is greater than 0.

因为Logit转换只是概率的对数,或ln(P(Goods)/P(bad)),所以WoE非常适合于逻辑回归。当在逻辑回归中使用wo编码的预测因子时,预测因子被处理成与编码到相同的尺度,这样可以直接比较线性逻辑回归方程中的变量。

例如下面的数据

11 common classification feature encoding techniques

会被编码为:

11 common classification feature encoding techniques

代码如下:

from category_encoders import WOEEncoder
 df = pd.DataFrame({‘cat’: [‘a’, ‘b’, ‘a’, ‘b’, ‘a’, ‘a’, ‘b’, ‘c’, ‘c’], ‘target’: [1, 0, 0, 1, 0, 0, 1, 1, 0]})
 woe = WOEEncoder(cols=[‘cat’], random_state=42)
 X = df[‘cat’]
 y = df.target
 encoded_df = woe.fit_transform(X, y)
Copy after login

7、Helmert Encoding

Helmert Encoding将一个级别的因变量的平均值与该编码中所有先前水平的因变量的平均值进行比较。

反向 Helmert 编码是类别编码器中变体的另一个名称。它将因变量的特定水平平均值与其所有先前水平的水平的平均值进行比较。

11 common classification feature encoding techniques

会被编码为

11 common classification feature encoding techniques

代码如下:

import category_encoders as ce
 encoder=ce.HelmertEncoder(cols=’Dept’)
 new_df=encoder.fit_transform(df[‘Dept’])
 new_hdf=pd.concat([df,new_df], axis=1)
 new_hdf
Copy after login

8、Cat Boost Encoding

是CatBoost编码器试图解决的是目标泄漏问题,除了目标编码外,还使用了一个排序概念。它的工作原理与时间序列数据验证类似。当前特征的目标概率仅从它之前的行(观测值)计算,这意味着目标统计值依赖于观测历史。

11 common classification feature encoding techniques

TargetCount:某个类别特性的目标值的总和(到当前为止)。

Prior:它的值是恒定的,用(数据集中的观察总数(即行))/(整个数据集中的目标值之和)表示。

featucalculate:到目前为止已经看到的、具有与此相同值的分类特征的总数。

11 common classification feature encoding techniques

编码后的结果如下:

11 common classification feature encoding techniques

代码:

import category_encoders
 category_encoders.cat_boost.CatBoostEncoder(verbose=0,
 cols=None, drop_invariant=False, return_df=True,
 handle_unknown=’value’, handle_missing=’value’,
 random_state=None, sigma=None, a=1)
 
 target = df[[‘target’]]
 train = df.drop(‘target’, axis = 1)
 
 # Define catboost encoder
 cbe_encoder = ce.cat_boost.CatBoostEncoder()
 
 # Fit encoder and transform the features
 cbe_encoder.fit(train, target)
 train_cbe = cbe_encoder.transform(train)
Copy after login

9、James Stein Encoding

James-Stein 为特征值提供以下加权平均值:

  • 观察到的特征值的平均目标值。
  • 平均期望值(与特征值无关)。

James-Stein 编码器将平均值缩小到全局的平均值。该编码器是基于目标的。但是James-Stein 估计器有缺点:它只支持正态分布。

它只能在给定正态分布的情况下定义(实时情况并非如此)。为了防止这种情况,我们可以使用 beta 分布或使用对数-比值比转换二元目标,就像在 WOE 编码器中所做的那样(默认使用它,因为它很简单)。

10、M Estimator Encoding:

Target Encoder的一个更直接的变体是M Estimator Encoding。它只包含一个超参数m,它代表正则化幂。m值越大收缩越强。建议m的取值范围为1 ~ 100。

11、 Sum Encoder

Sum Encoder将类别列的特定级别的因变量(目标)的平均值与目标的总体平均值进行比较。在线性回归(LR)的模型中,Sum Encoder和ONE HOT ENCODING都是常用的方法。两种模型对LR系数的解释是不同的,Sum Encoder模型的截距代表了总体平均值(在所有条件下),而系数很容易被理解为主要效应。在OHE模型中,截距代表基线条件的平均值,系数代表简单效应(一个特定条件与基线之间的差)。

最后,在编码中我们用到了一个非常好用的Python包 “category-encoders”它还提供了其他的编码方法,如果你对他感兴趣,请查看它的官方文档:

http://contrib.scikit-learn.org/category_encoders/

The above is the detailed content of 11 common classification feature encoding techniques. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:51cto.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template