Table of Contents
The Evolution of MLOps
But don't think , simply because there are so many platforms and tools available, the core principles of MLOps are ignored. Businesses new to MLOps should remember that at its core, MLOps is about creating a strong connection between data science and data engineering.
Market Landscape of MLOps
The corporate culture change brought about by MLOps
Home Technology peripherals AI To accelerate AI development, how can companies use MLOps to improve production efficiency?

To accelerate AI development, how can companies use MLOps to improve production efficiency?

Apr 12, 2023 pm 12:31 PM
AI idc mlops

To accelerate AI development, how can companies use MLOps to improve production efficiency?

When companies deploy artificial intelligence and build machine learning projects for the first time, they often focus on theory. So is there a model that can provide the necessary results? If so, how do we build and train such a model?

According to IDC data, it takes more than 9 months on average to deploy artificial intelligence or machine learning solutions. Mainly because the tools data scientists use to build these proofs of concept often don’t translate well to production systems. IDC analyst Sriram Subramanian said: "We call the time required for the R&D process 'model speed', that is, how long it takes from start to finish."

Enterprises can use MLOps to solve the above problems. MLOps (Machine Learning Operations) is a set of best practices, frameworks and tools that can help enterprises manage data, models, deployment, monitoring, and other aspects that use theoretical concepts to validate AI systems and make them effective.

Subramanian further explained, “MLOps reduces model speed to weeks—sometimes even days, just like using DevOps to speed up the average time to build an application, which is why you need MLOps.” Enterprises adopt MLOps can build more models, innovate faster, and cope with more usage scenarios. “The value proposition of MLOps is clear.”

According to IDC, 60% of enterprises will use MLOps to implement their machine learning workflows by 2024. Subramanian said that when they surveyed respondents about the challenges of adopting AI and machine learning, one of the top barriers was the lack of MLOps, second only to cost.

In this article, we examine what MLOps is, how it has evolved, and what organizations need to accomplish and keep in mind to make the most of this emerging approach to AI operations.

The Evolution of MLOps

A few years ago, when Eugenio Zuccarelli first started building machine learning projects, MLOps was just a set of best practices. Since then, Zuccarelli has worked on AI projects at several companies, including those in healthcare and financial services, and he has seen MLOps begin to evolve over time to include a variety of tools and platforms.

Today, MLOps provides a fairly powerful framework for operating artificial intelligence, said Zuccarelli, now an innovation data scientist at CVS Health, citing a previous project he worked on to create a system that could Applications for predicting adverse outcomes such as readmission or disease progression.

“We are exploring data sets and models and communicating with doctors to find out the characteristics of the best models. But for these models to be truly useful, users need to actually use these models.”

This means building a reliable, fast and stable mobile application, with a machine learning system on the back end connected through an API. “Without MLOps, we wouldn’t be able to ensure this,” he said. His team used the H2O MLOps platform and other tools to create health dashboards for the model. “You definitely don’t want major changes to the model, and you don’t want to introduce bias. The health dashboard allows us to understand whether the system has changed.”

Updates to production systems can also be made by using the MLOps platform. He said: "It is very difficult to swap out files without stopping application work. MLOps can swap out the system while production is in progress with minimal system impact."

He said, MLOps As the platform matures, it will speed up the entire model development process, because companies will not have to reinvent the framework for every project. Data pipeline management capabilities are also critical to AI implementation.

"If we have multiple data sources that need to communicate with each other, this is where MLOps comes into play. You want all the data flowing into the machine learning model to be consistent and of high quality. Just like that sentence As the saying goes, garbage in, garbage out. If the model's information is poor, then the prediction itself will be poor."

The foundation of MLOps: an ever-changing target

But don't think , simply because there are so many platforms and tools available, the core principles of MLOps are ignored. Businesses new to MLOps should remember that at its core, MLOps is about creating a strong connection between data science and data engineering.

Zuccarelli said: "To ensure the success of MLOps projects, you need data engineers and data scientists to be working on the same team."

In addition, prevent bias, ensure transparency, and provide accountability Interpretability, as well as the tools necessary to support an ethics platform, are still under development. "There is definitely a lot of work that needs to be done in this area because this is a very new area."

So without a complete With turnkey solutions available, companies must have a good understanding of how to make MLOps effective in implementing all aspects of AI. That means building expertise broadly, said Meagan Gentry, national practice manager for the AI ​​team at technology consultancy Insight.

MLOps covers the entire scope from data collection, verification and analysis, to managing machine resources and tracking model performance. There are many auxiliary tools that can be deployed locally, in the cloud or at the edge. Some of these tools are open source and some are proprietary. of.

But mastering technology is only one aspect, MLOps also draws on the agile methods and principles of iterative development from DevOps, Gentry said. Additionally, as with any agile-related field, communication is crucial.

"Communication in each role is very important, communication between data scientists and data engineers, communication with DevOps, and communication with the entire IT team."

For just For starting companies, MLOps can be confusing. There are many general principles, dozens of related vendors, and even a lot of open source tool sets.

"There are all kinds of pitfalls here," said Helen Ristov, senior manager of enterprise architecture at Capgemini Americas. "Many of them are still under development, and there is no formal set of guidelines yet. Like DevOps, this is still an emerging technology, and it will take some time for guidelines and related policies to be rolled out."

Ristov It is recommended that enterprises should start their MLOps journey with a data platform. "Maybe they have data sets, but they are in different places and there is not a unified environment."

Enterprises don't need to move all their data to one platform, but they do need one, she said. Methods introduce data from different data sources, and different applications have different situations. For example, data lakes are ideal for businesses that perform large amounts of analysis at high frequency and low-cost storage. MLOps platforms often have tools for building and managing data pipelines and tracking different versions of training data, but this is not a one-size-fits-all approach. Then there are other aspects like model creation, version control, logging, measuring feature sets, managing the model itself, and more.

"There's a lot of coding involved," Ristov said. Building an MLOps platform can take months, and platform vendors still have a lot of work to do when it comes to integrations.

"There is a lot of room for development in these different directions, many tools are still being developed, the ecosystem is very large, and people are just picking and choosing what they need. MLOps is still in its 'adolescence', and most enterprises Organizations are still looking for the most ideal configuration."

Market Landscape of MLOps

IDC's Subramanian said the MLOps market size is expected to grow from $185 million in 2020 to approximately $700 million in 2025 USD, but it’s also possible that this market is significantly undervalued because MLOps products are often bundled with larger platforms. He said the true size of the MLOps market could exceed $2 billion by 2025.

Subramanian said that MLOps vendors tend to fall into three broad categories. The first are large cloud providers, such as AWS, Azure and Google Cloud, which provide MLOps functionality as a service to customers.

The second category is machine learning platform manufacturers, such as DataRobot, Dataiku, Iguazio, etc.

"The third category is what we used to call data management vendors, such as Cloudera, SAS, DataBricks, etc. Their advantages lie in data management capabilities and data operations, and then extend to machine learning capabilities, and ultimately to MLOps Capabilities."

Subramanian said that these three areas have shown explosive growth, and what will make MLOps vendors stand out is whether they can support both local environments and cloud deployment models, and whether they can implement trusted, Responsible artificial intelligence, whether it is plug-and-play and whether it is easy to expand, this is the aspect that reflects the difference. ”

According to a recent IDC survey, the lack of various methods to implement responsible AI is one of the top three barriers to the spread of artificial intelligence and machine learning, tied for second place with the lack of MLOps. Caused by This situation is largely due to the fact that there is no other choice but to adopt MLOps, said Sumit Agarwal, research analyst for artificial intelligence and machine learning at Gartner.

"The other methods are manual, so, there is really no Other options were available. If you want to scale, you need automation. You need code, data, and model traceability. "

According to a recent survey by Gartner, the average time it takes for a model to go from proof of concept to production has shortened from 9 months to 7.3 months. "But 7.3 months is still a long time, and enterprises There are many opportunities for organizations to leverage MLOps. "

The corporate culture change brought about by MLOps

Amaresh Tripathy, global head of analytics at Genpact, said that implementing MLOps also requires a cultural change as an enterprise AI team.

“A data scientist often comes across as a mad scientist trying to find a needle in a haystack. But in reality data scientists are discoverers and explorers, not factories producing widgets. "Enterprises often underestimate the effort they need to make.

"People can better understand engineering and have such and such requirements for user experience, but for some reason, people have completely different requirements for deployment models. One would assume that all data scientists who are good at testing environments will naturally deploy these models, or can send a few IT staff to deploy them, which is wrong. People don’t understand what they need. ”

Many companies are not aware of the knock-on effects MLOps may have on other aspects of the company, which often leads to huge changes within the company.

“You can put MLOps in call centers and the average response time will actually increase because simple things are left to machines and AI to handle, and things that are left to humans actually take longer time, because these things tend to be more complex. So you need to rethink what these jobs are, what kind of people you need, what kind of skills these people should have."

Tripathy said that today, a company Less than 5% of decisions in organizations are driven by algorithms, but this is changing rapidly. "We predict that in the next five years, 20% to 25% of decisions will be driven by algorithms, and every statistic we see shows that we are at an inflection point in the rapid expansion of artificial intelligence."

He believes that MLOps is a critical part. Without MLOps, you can't use AI consistently. MLOps is the catalyst for scaling enterprise AI.

The above is the detailed content of To accelerate AI development, how can companies use MLOps to improve production efficiency?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Jul 15, 2024 pm 12:21 PM

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G

See all articles