


How machine learning could save clinical trial operations millions of dollars
As a large clinical trial service provider, WCG has considerable influence on the market paths of many drugs and medical devices. But as a collection of more than 30 formerly independent companies, it's difficult to get consistent data to support these services. This is where Tamr's data mastering solutions help.
As a clinical services organization, WCG represents pharmaceutical companies and device manufacturers in all aspects of clinical trials, from human resources and IT to patient engagement and ethics review, for default It provides critical services to pharmaceutical giants such as Crocker and Roche, as well as to thousands of small and mid-sized pharmaceutical startups and research groups seeking regulatory approval for new drugs and devices.
The only service the company does not provide is conducting actual trials. "We don't do that," said Art Morales, the company's chief technology officer and data officer.
Over the past decade, WCG has established a profitable niche in the clinical trials industry through the acquisition of 35 companies. Each company—some of them more than 50 years old—specializes in certain aspects of the clinical trial process. These companies develop their own custom software applications to automate their various business processes, providing a very valuable source of intellectual property.
Having different systems makes sense from the perspective of each individual business, but this poses a challenge for WCG, which wants to maintain a consistent view of all subsidiary operations.
The company initially attempted to resolve data inconsistencies manually. A team of about five to 10 people worked for two years to root out typos, duplicate entries and other data errors in the disparate systems used by 35 subsidiaries. The cleaned, standardized data is stored in the WCG data warehouse running in the cloud, where it can be analyzed using a variety of powerful analysis engines.
“One of the big questions we have is, how do you determine that a ‘node’ is the same ‘node’ in different organizations?” Morales explained. "In some systems, there may be an address, or there may not be an address, or the address may be spelled incorrectly. Some data may just be missing, and there's really a lot of uncertainty."
Because of this uncertainty And decisions need to be made one by one, the process of manually mastering the data is tedious and time-consuming. The company spent millions of dollars to master the data, but there were still inconsistencies in the data.
Morales realized there had to be a better way. He heard about Tamr, a data mastering tool that uses machine learning to automatically identify known entities in large data sets.
Data mastering based on machine learning
Tamr is a data quality tool that was born eight years ago and originated from academic research conducted by Mike Stonebraker, a famous computer scientist at MIT.
Stonebraker believes that machine learning is necessary to solve long-standing data quality issues that have It will be exacerbated at the scale of big data.
For years, the prescribed solution to this dilemma has been a master data management (MDM) project. Instead of relying on each individual system to make sure everything is correct, individual data systems will have pointers to known copies of the data—"golden records," so to speak.
The Golden Record’s approach can solve the problem, at least that’s what they think. However, the best-laid plans run the risk of turning into dust once they encounter reality. This is exactly what happens with traditional MDM.
Relying on humans to clean and manage data is futile. this will not work.
Stonebraker’s insight into this problem is to use machine learning to classify data, much like Google used machine learning to automatically classify websites in the early days of the internet, beating out Yahoo’s manual curation Internet efforts.
By training machines to recognize entities in business systems, Tamr has found a way to automatically create golden records. A key conclusion the team reached was that when people were asked to confirm consistency with a limited set of options, they did much better than when they were presented with dozens or hundreds of options simultaneously.
Clinically Golden Record
WCG’s Tamr trial began in May 2021. After a period of training, Tamr software observes and learns how employees deal with data differences.
A team of WCG employees worked with Tamr to review and cleanse all data sources in the data warehouse. The software identifies "clusters," two or more terms that mean the same thing in different applications, and loads them as golden records in WCG's cloud data warehouse.
Each data source is run through Tamr before loading data into the data warehouse. Data sources range in size from approximately 50,000 records to over 1 million records, and may have around 200 columns per entity. The problem is not quantity, but complexity. In addition to speeding up the data mastering process by approximately 4x, Tamr tools produce more standardized data, which means greater clarity for business operations.
“When you clean data, now you can use cleaner data to get better operational insights,” Morales said. "We can match through Salesforce and our applications to know these are the right things. Before, if the data wasn't cleaned, you'd match 50 percent. Now we can match 80 percent. So using what we're doing Things have very clear operational benefits."
Tamr cannot successfully match all entities into clusters, and there are still some edge cases that require human expertise. In these cases, the software lets the operator know that it has low confidence in the match. But according to Morales, Tamr is very good at finding obvious matches. He said the accuracy rate was about 95% from day one.
"You have to accept that with any data mastery project there will be mismatches. There will be Type I and Type II errors," he said. "It would be nice if you could trace the source of these errors from... because humans make the same mistakes."
Additionally, Tamr helps WCG better understand its data.
Morales said the company’s manual approach to data mastering cost millions of dollars in total, while Tamr’s cost was less than $1 million. Improvements in data quality are harder to quantify, but arguably more important.
##
The above is the detailed content of How machine learning could save clinical trial operations millions of dollars. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,
