Five common questions for newbies in machine learning
Handling Missing Values
In data preprocessing, a critical step is to handle missing data because machine learning models will not accept NaN values as their input. There are many ways to fill in these NaN values, but we first need to understand the importance of missing values.
A very simple way is to remove all missing values from the machine learning dataset, but before doing that, check the overall percentage of NaN values that appear in the machine learning dataset. If it is less than 1%, we can remove all missing values, otherwise we need to impute the data by choosing other methods like central tendency measure, KNN Imputer, etc.
When we use numbers in features, we use mean or median. The mean is the average value we can calculate by summing all the values in a row and then dividing by their amount. The median also represents an average. The median arranges the data in order of size to form a sequence, which is the data in the middle of the sequence. When individual data in a set of data vary greatly, the median is often used to describe the central tendency of the set of data.
If there is a skewed distribution in the machine learning data set, it is often better to use the median than the mean.
Outliers/Outliers
Outliers are data points that are significantly different from other observations. Sometimes, these outliers can also be sensitive. Before dealing with outliers, it is recommended to examine the machine learning dataset.
For example:
- Outliers are significant in depth value predictions based on observed rainfall.
- Outliers in house price predictions have no meaning.
Data Leakage
What is the data leakage problem in machine learning models?
Data leaks occur when the data we use to train machine learning models contains information that the machine learning model is trying to predict. This can lead to unreliable prediction results after the model is deployed.
This problem may be caused by the data standardization or normalization method. Because most of us continue to use these methods before splitting the data into training and test sets.
Choose the right machine learning model
In real time, I feel that turning to some complex models unnecessarily may create some interpretability issues for business-oriented people. For example, linear regression will be easier to interpret than a neural network algorithm.
Select the corresponding machine learning model mainly based on the size and complexity of the data set. If we deal with complex problems, we can use some efficient machine learning models, such as SVN, KNN, random forest, etc.
Most of the time, the data exploration phase will help us choose the corresponding machine learning model. If the data is linearly separable in the visualization, then we can use linear regression. Support vector machines and KNN will be useful if we don't know anything about the data.
There is also a problem of model interpretability. For example, linear regression is easier to explain than neural network algorithms.
Validation Metrics
Metrics are quantitative measures of model predictors and real data. If the question is in regression, the key metrics are accuracy (R2 score), MAE (mean absolute error), and RMSE (root mean square error). If it is a classification problem, the key indicators are precision, recall, F1score and confusion matrix.
The above is the detailed content of Five common questions for newbies in machine learning. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.
