Why applying artificial intelligence requires a major mindset shift
Although artificial intelligence is currently making encouraging progress, it has yet to cause revolutionary changes in many industries. In many cases, the problem isn’t necessarily the technology, but the way people perceive it.
"Power and Prediction" is a new book written by an artificial intelligence expert that explores the fundamental challenges of applying artificial intelligence technology in different industries. A sequel to their critically acclaimed Prediction Machines, this book discusses what businesses need to change before they can benefit from the full potential of advances in artificial intelligence.
From point solutions and applications to artificial intelligence systems, industry experts examine the successes and failures of artificial intelligence in different fields. They also provide important insights from past technological revolutions and show how rethinking and designing AI systems from the ground up can help create real value based on powerful machine learning and deep learning algorithms.
Point Solutions vs Artificial Intelligence Systems
Today’s AI systems are predictive machines, meaning they can predict what will happen in the future based on past data. This is what every mathematical model does. But thanks to the availability of large amounts of data and computing, as well as advances in deep learning algorithms, people have been able to create models that can make predictions about complex information such as images, text, and multidimensional data.
In the book "Power and Prediction", the author divides the value of artificial intelligence into three categories: point solutions, application solutions, and system solutions.
So far, most of what people have seen are point solutions and application solutions. These AI systems replace tasks that previously required prediction. For example, in financial services, one of the tasks is to predict which transactions are fraudulent. A machine learning model trained on the right data can take over this task. Point solutions are the low-hanging fruit of artificial intelligence because adopting them requires only minimal investments and changes to the underlying systems.
Another example of a point solution is analyzing radiology scans. There are now several deep learning models that can detect various diseases from X-rays and MRI scans at a level comparable to experienced radiologists.
They are automating one of the many tasks performed by radiologists without requiring any changes to the underlying patient care system.
Artificial intelligence systems can provide greater value by automating new tasks and problems that are not solved by current applications and systems. However, AI systems require a blank slate approach, in which entire processes, workflows, and applications need to be redesigned to solve not only existing problems but also new ones. In order for them to work, AI systems often require new organizational structures and alignment of goals and incentives. This makes AI systems more difficult and risky, but also more rewarding.
The author of "Power and Prediction" writes: "System solutions are often more difficult to achieve than point solutions or application solutions because AI-enhanced decisions affect other decisions in the system. Point Solutions and applied solutions often lead to disruption by reinforcing existing systems, while system solutions disrupt existing solutions. However, in many cases, system solutions may bring the greatest benefits to AI investments The overall return of artificial intelligence."
The Intermediate Era of Artificial Intelligence
In the book "Power and Prediction", the author believes that we are now in the "intermediate era" of artificial intelligence. After witnessing this After the power of technology, before its widespread adoption. This is why point solutions are currently a more attractive and popular use case for artificial intelligence.
This has historical precedent. For example, in the late 19th century, when electricity began to be industrialized, its first applications were point solutions. For factories, this means replacing steam engines with electric motors to reduce energy costs. Changing the source of electricity does not require redesigning the factory.
However, the real value proposition of electricity is to decouple the machine from the power source. This enabled new factory designs that were not possible under steam power and made them more productive and less expensive. But that adoption took decades because it required fundamental changes, a break in habits, and an upfront investment that existing businesses were unwilling to make. Those entrepreneurs who seized the opportunity succeeded in taking leading positions and capturing a large portion of the market that later replaced the old market.
One can see these changes in many other industries, such as the rise of online shopping, the advent of personal computers, and the shift from print to digital media.
Artificial Intelligence is an infrastructure technology whose impact technology leaders have compared to electricity. Therefore, this requires a new mentality and bold exploration.
The author of "Power and Prediction" writes: "AI-driven industry transformation takes time, and it is not obvious how to do it at first. Many people may try and fail because they misunderstand the need, or they cannot Let the unit economics work. Eventually, someone will succeed and build a path to profitability. Others will try to imitate. Industry leaders will try to protect their advantage. Sometimes it succeeds. Regardless, the industry will transform, as it always has There will always be winners and losers."
Breaking the Rules
The author of "Power and Prediction" said, "When there is nothing, you will not give up. If there is no need By using the information to make informed choices, you can avoid the consequences of doing things blindly. So it’s not surprising that when AI predictions emerge, the opportunities for their use are not obvious. Potential decision-makers can’t make decisions without this information. There’s a scaffolding built on it.”
Opportunities in artificial intelligence are difficult to spot because they are often hidden behind strict rules and procedures that work well and have been established for a long time. These rules make up for the lack of information. They enable people to make decisions without being able to predict accurate outcomes. They help build systems that, while not optimal, work reliably in many situations.
The key to finding these opportunities is, first, to understand the power of prediction machines, and second, to find where predictions can supersede established rules. A very interesting example that the author explores in the book is the use of artificial intelligence in education.
Thanks to machine learning algorithms and historical data, it is possible to predict student performance, where they will excel and where they will struggle. This gives us the opportunity to provide more personalized content for each student.
But these predictive models are not very helpful in the current education system, which is based on age-based curriculum with only one teacher per class. This system was created because teachers have no way to accurately measure students’ individual learning abilities through their educational trajectories.
To be able to take full advantage of machine learning, people need to rethink the education system in a new way. This new system will replace age-based curriculum with personalized discussions, group projects and teacher support, creating a greater impact on overall education and personal growth and development.
The authors of "Power and Prediction" write: "Age-based curriculum rules are the glue of the modern education system, so artificial intelligence to personalize learning content can only provide limited benefits in this system . To unlock the potential of AI for personalized education, the main challenge is not to build predictive models, but to decouple education from the age-based curriculum rules that currently glue the system together."
PowerShift
Successful applications of artificial intelligence require what the author of "Power and Prediction" calls "systems thinking," which contrasts with "task thinking." A task mindset focuses on cost savings. Systems thinking focuses on value creation. The task mindset focuses on automating individual tasks. Systems thinking recognizes the need to rebuild systems that generate value based on machine predictions and human decision-making.
People have already seen this happening in some industries and large technology companies such as Amazon and Google, which have formed profit-making systems based on artificial intelligence predictions to recommend personalized content.
Perhaps one of the important elements of the systems mindset is the power shift that occurs with the adoption of artificial intelligence. As the system changes, so do the people with decision-making power.
The author of "Power and Prediction" writes, "While artificial intelligence cannot turn decisions over to machines, it can change who makes decisions. Machines have no power, but once deployed, they can change who has People with power. When machines change decision-makers, the underlying systems must change too. The engineers who build the machines need to understand the consequences of the judgments they embed into the products. Those who used to make decisions in the moment may no longer need to."
A hypothetical example that the authors explore in the book is heart attack risk. Currently, this risk assessment is done through testing in hospital, with the decision made by the specialist who carries out the test.
Hypothetically, it is possible to build an artificial intelligence system that predicts heart attack risk based on data collected by wearable devices such as smart watches. It would then be possible to move these predictions from the triage space of a hospital emergency department to the patient's home. In this case, many patients will never need to go to the hospital after being diagnosed with a condition that a pharmacist or primary care physician can help treat at home.
No matter where one stands on the scientific and philosophical debates surrounding artificial intelligence, what one can agree on is that predictive machines have a lot to offer and are only scratching the surface. Leveraging their full potential starts by going back to the drawing board and rethinking how people would design systems if they had the ability to predict. ?
The above is the detailed content of Why applying artificial intelligence requires a major mindset shift. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

In the world of front-end development, VSCode has become the tool of choice for countless developers with its powerful functions and rich plug-in ecosystem. In recent years, with the rapid development of artificial intelligence technology, AI code assistants on VSCode have sprung up, greatly improving developers' coding efficiency. AI code assistants on VSCode have sprung up like mushrooms after a rain, greatly improving developers' coding efficiency. It uses artificial intelligence technology to intelligently analyze code and provide precise code completion, automatic error correction, grammar checking and other functions, which greatly reduces developers' errors and tedious manual work during the coding process. Today, I will recommend 12 VSCode front-end development AI code assistants to help you in your programming journey.
