Table of Contents
Using compact.exe on Windows
Home Common Problem How to use compact.exe to free up disk space on Windows

How to use compact.exe to free up disk space on Windows

Apr 13, 2023 pm 03:37 PM
algorithm

Microsoft has introduced new options for the command line tool compact.exe in the Windows 10 operating system. It allows users to compress folders on the system using new algorithms to free up disk space.

Unlike many other compression solutions, compact promises little impact on performance when the system needs to load files. Files are compressed without changing the file extension or location. Decompression happens at runtime and most modern systems shouldn't bother with this. This tool is also included in Windows 11.

Compact.exe compresses files and folders on Windows without changing file names or making other modifications to the files. Depending on the type of file, compression may save gigabytes of disk space or very little. Files that are already compressed (such as JPG image files) will show little to no gain when compression is run on them. On the other hand, uncompressed files may show significant gains. You can check out this GitHub page which lists hundreds of games and programs and the savings when using compress.exe on them.

Some applications and games may react adversely to compression. If this is the case, unzipping will solve the problem.

Tip: If you prefer a graphical user interface, check out CompactGUI. Windows includes an option to compress the entire drive. Right-click on any drive in Explorer and select Properties to turn on the option. You can find "Compress this drive to save disk space" under General in the Properties window.

Using compact.exe on Windows

How to use compact.exe to free up disk space on Windows

You can run this program from any command prompt window. Open a new Command Prompt window, for example, using Windows-R. Open the Run box, type cmd.exe and press the Enter key on your keyboard.

Running compact alone will display the compression status of all folders and files in the current directory.

The command line tool supports several parameters, some of which may be confusing at first.

Core commands compact.exe /c and compact.exe /u mark the current or specified directory so that future changes to the folder (such as modified files or newly added files) will be compressed or decompressed.

The /s parameter needs to be provided to the command to perform the selected operation on all files in the specified directory and all its subdirectories.

By default, the current directory is used, but one can be provided instead of performing operations on a different directory. To do this, add the path information to the command.

Command compact.exe /c /s:c:\users\test\downloads\ Run compression on the download directory.

You can specify the compression algorithm by supplying the /EXE parameter. Parameter /EXE:XPRESS8K uses this algorithm. The following algorithms are supported:

  • XPRESS4K (fastest and default)
  • XPRESS8K
  • XPRESS16K
  • LZX (most compact)

The default algorithm is designed to have as little performance impact as possible, even on older systems. Most devices should have no problem using 8k or even 16k algorithms.

Other useful parameters for compact.exe:

  • /f Forces compression or decompression. Compressed or uncompressed files will be skipped. Should be used if the process is interrupted (for example, crashes).
  • /i Ignore the error and continue without stopping.
  • /? Display help information.

The above is the detailed content of How to use compact.exe to free up disk space on Windows. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

CLIP-BEVFormer: Explicitly supervise the BEVFormer structure to improve long-tail detection performance CLIP-BEVFormer: Explicitly supervise the BEVFormer structure to improve long-tail detection performance Mar 26, 2024 pm 12:41 PM

Written above & the author’s personal understanding: At present, in the entire autonomous driving system, the perception module plays a vital role. The autonomous vehicle driving on the road can only obtain accurate perception results through the perception module. The downstream regulation and control module in the autonomous driving system makes timely and correct judgments and behavioral decisions. Currently, cars with autonomous driving functions are usually equipped with a variety of data information sensors including surround-view camera sensors, lidar sensors, and millimeter-wave radar sensors to collect information in different modalities to achieve accurate perception tasks. The BEV perception algorithm based on pure vision is favored by the industry because of its low hardware cost and easy deployment, and its output results can be easily applied to various downstream tasks.

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Explore the underlying principles and algorithm selection of the C++sort function Explore the underlying principles and algorithm selection of the C++sort function Apr 02, 2024 pm 05:36 PM

The bottom layer of the C++sort function uses merge sort, its complexity is O(nlogn), and provides different sorting algorithm choices, including quick sort, heap sort and stable sort.

Can artificial intelligence predict crime? Explore CrimeGPT's capabilities Can artificial intelligence predict crime? Explore CrimeGPT's capabilities Mar 22, 2024 pm 10:10 PM

The convergence of artificial intelligence (AI) and law enforcement opens up new possibilities for crime prevention and detection. The predictive capabilities of artificial intelligence are widely used in systems such as CrimeGPT (Crime Prediction Technology) to predict criminal activities. This article explores the potential of artificial intelligence in crime prediction, its current applications, the challenges it faces, and the possible ethical implications of the technology. Artificial Intelligence and Crime Prediction: The Basics CrimeGPT uses machine learning algorithms to analyze large data sets, identifying patterns that can predict where and when crimes are likely to occur. These data sets include historical crime statistics, demographic information, economic indicators, weather patterns, and more. By identifying trends that human analysts might miss, artificial intelligence can empower law enforcement agencies

Improved detection algorithm: for target detection in high-resolution optical remote sensing images Improved detection algorithm: for target detection in high-resolution optical remote sensing images Jun 06, 2024 pm 12:33 PM

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

Practice and reflections on Jiuzhang Yunji DataCanvas multi-modal large model platform Practice and reflections on Jiuzhang Yunji DataCanvas multi-modal large model platform Oct 20, 2023 am 08:45 AM

1. The historical development of multi-modal large models. The photo above is the first artificial intelligence workshop held at Dartmouth College in the United States in 1956. This conference is also considered to have kicked off the development of artificial intelligence. Participants Mainly the pioneers of symbolic logic (except for the neurobiologist Peter Milner in the middle of the front row). However, this symbolic logic theory could not be realized for a long time, and even ushered in the first AI winter in the 1980s and 1990s. It was not until the recent implementation of large language models that we discovered that neural networks really carry this logical thinking. The work of neurobiologist Peter Milner inspired the subsequent development of artificial neural networks, and it was for this reason that he was invited to participate in this project.

Application of algorithms in the construction of 58 portrait platform Application of algorithms in the construction of 58 portrait platform May 09, 2024 am 09:01 AM

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

Add SOTA in real time and skyrocket! FastOcc: Faster inference and deployment-friendly Occ algorithm is here! Add SOTA in real time and skyrocket! FastOcc: Faster inference and deployment-friendly Occ algorithm is here! Mar 14, 2024 pm 11:50 PM

Written above & The author’s personal understanding is that in the autonomous driving system, the perception task is a crucial component of the entire autonomous driving system. The main goal of the perception task is to enable autonomous vehicles to understand and perceive surrounding environmental elements, such as vehicles driving on the road, pedestrians on the roadside, obstacles encountered during driving, traffic signs on the road, etc., thereby helping downstream modules Make correct and reasonable decisions and actions. A vehicle with self-driving capabilities is usually equipped with different types of information collection sensors, such as surround-view camera sensors, lidar sensors, millimeter-wave radar sensors, etc., to ensure that the self-driving vehicle can accurately perceive and understand surrounding environment elements. , enabling autonomous vehicles to make correct decisions during autonomous driving. Head