Table of Contents
What is rule-based artificial intelligence? " >What is rule-based artificial intelligence?
What is machine learning? " >What is machine learning?
What are the main differences between rule-based artificial intelligence and machine learning? " >What are the main differences between rule-based artificial intelligence and machine learning?
When to use a rule-based model? " >When to use a rule-based model?
When to use machine learning? " >When to use machine learning?
Conclusion" >Conclusion
Home Technology peripherals AI Rule-based artificial intelligence vs machine learning

Rule-based artificial intelligence vs machine learning

Apr 13, 2023 pm 03:55 PM
AI machine learning

Rule-based artificial intelligence vs machine learning

Machine learning systems learn from past data and adapt to new situations autonomously, whereas rule-based systems rely on human intervention for any modifications.

What is rule-based artificial intelligence?

Rule-based artificial intelligence is an AI system based on a set of predetermined rules. These rules are created by humans and define what actions the system will take in different situations.

For example, if X occurs, Y should be executed. Rule-based AI is deterministic in nature, meaning it takes a cause-and-effect approach.

Rule-based AI models require basic data and information to run successfully, and they are limited to performing the tasks and functions they are programmed to do. They are a more advanced form of robotic process automation and can be used for tasks such as data entry, document classification, and fraud detection.

What is machine learning?

Rule-based artificial intelligence vs machine learning


Source: AnalyticsVidhya

Machine learning is artificial intelligence A branch of science that focuses on using data and algorithms to imitate the way humans learn. Machine learning algorithms are trained to make predictions and classifications based on past data, gradually improving accuracy over time.

Machine learning models are divided into three main categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning involves training a model using labeled data to make predictions. Unsupervised learning involves finding patterns in unlabeled data, and semi-supervised learning is a combination of the two.

Machine learning algorithms are often created using frameworks that accelerate solution development, such as TensorFlow and PyTorch. Machine learning has a wide range of use cases, including natural language processing, image recognition, and fraud detection.

What are the main differences between rule-based artificial intelligence and machine learning?

The main difference between rule-based artificial intelligence and machine learning is that rule-based systems rely on rules coded by humans to make decisions, while machine learning systems learn from past data Learn and adapt to new situations on your own. Rule-based AI models are deterministic and limited to performing programmed tasks, whereas machine learning models can be used for a wide range of tasks and functions.

Rule-based artificial intelligence vs machine learning


When to use a rule-based model?

Rule-based models are best suited when the problem is well defined, the input data is structured, and the rules are clear and easy to understand. They are very effective for problems that can be broken down into a series of logical steps where the outcome can be predicted based on a set of if-then rules. Examples of rule-based systems include expert systems in the medical and legal fields, fraud detection systems in the financial field, and chatbots in customer service.

In these cases, the rules are usually fixed and do not change frequently, and the data the system operates on is relatively simple and structured. However, rule-based models may not be suitable for more complex problems where the data is unstructured or the rules are constantly changing, as they may not be able to handle the necessary flexibility and adaptability.

When to use machine learning?

Machine learning is well suited for situations where the problem is complex and the input data is unstructured, noisy, or variable. It is also ideal for situations where the rules or patterns governing the data are unknown, but can be discovered through analysis. Machine learning models can process large amounts of data and identify complex patterns and relationships that may not be immediately apparent to human analysts.

They can be used in a wide range of applications, including image and speech recognition, natural language processing, recommendation systems and predictive analytics. Machine learning models are particularly useful when the problem is dynamic and the rules or patterns change over time. However, machine learning models require large amounts of high-quality training data and may require significant computing resources for training and inference, which may act as a barrier to adoption in some cases.

Conclusion

Rule-based artificial intelligence vs machine learning


##Source: Megaputer

While both rule-based artificial intelligence and machine learning have their pros and cons, the choice between the two depends on the specific use case. Rule-based AI is best suited for tasks that are deterministic and do not require adaptation to new situations, while machine learning is best suited for tasks that require adaptation and learning from past data. As artificial intelligence continues to evolve, both rule-based systems and machine learning will play an important role in shaping its future.

The above is the detailed content of Rule-based artificial intelligence vs machine learning. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles