Table of Contents
Five typical applications of AI in network security
1. Detection of malicious code and malicious activities
2. Encrypted traffic analysis
3. Detecting fake images
4. Voice, Language and Speech Recognition
5. Detect unknown threats
Conclusion
Home Technology peripherals AI How to use AI in cybersecurity

How to use AI in cybersecurity

Apr 14, 2023 pm 02:10 PM
AI cyber security

How to use AI in cybersecurity

Cybersecurity Ventures’ report shows that global cybercrime losses will be US$6 trillion in 2021, and global spending on combating cybercrime is expected to increase to 10.5 trillion in 2025 U.S. dollars, three times as much as in 2015 ($3 trillion).

Artificial intelligence is almost the only solution.

Statista, another research organization, believes that the value of artificial intelligence in cybersecurity has exceeded US$10 billion in 2020, and is expected to reach US$45 billion by 2027. IBM believes that companies that lack artificial intelligence security have three times the cost of defending against cyberattacks than companies that have deployed AI automated defense systems.

Research data from Meticulous shows that artificial intelligence applications in the field of network security will grow at an annual rate of 24%, reaching $46 billion by 2027.

Five typical applications of AI in network security

1. Detection of malicious code and malicious activities

By analyzing DNS traffic, artificial intelligence can automatically classify domain names to identify domain names such as C2, malicious, spam, phishing, and cloned domains. Before the application of AI, management mainly relied on blacklists, but a large number of updates were arduous. In particular, black products use automatic domain name generation technology to create a large number of domain names and constantly switch domain names. At this time, intelligent algorithms need to be used to learn, detect and block these black domain names.

2. Encrypted traffic analysis

Currently more than 80% of Internet traffic is encrypted, and traditional means are ineffective except for decryption. With the help of artificial intelligence technology, there is no need to decrypt and analyze the payload, but to identify through metadata and network packets, mainly including:

  • Malicious code
  • Malware family
  • Applications in use
  • Devices working within an encrypted TLS session or a version of the SSL framework

Encrypted traffic analysis has already played a role in practice, at least to help users not be completely blinded by the growing amount of encrypted traffic. However, since this technology is still in the emerging development stage, there is no need to invest too much cost and energy for the time being.

3. Detecting fake images

An AI algorithm that utilizes recurrent neural networks and encoding filters can identify “deepfakes,” found Whether the face in the photo has been replaced. This feature is particularly useful for remote biometrics in financial services, preventing scammers from falsifying photos or videos to pass themselves off as legitimate citizens who can obtain loans.

4. Voice, Language and Speech Recognition

This AI technology is able to read unstructured data in non-machine readable formats Information, combined with structured data from various network devices, enriches the data set to make accurate judgments.

5. Detect unknown threats

Based on statistical data, AI can recommend which protection tools to use or which settings need to be changed to automatically Improve network security. Moreover, due to the feedback mechanism, the more data the AI ​​processes, the more accurate the recommendations it will give. For example, MIT's AI2 detects unknown threats with an accuracy of up to 85%. In addition, the scale and speed of intelligent algorithms are unmatched by humans.

Conclusion

Artificial intelligence has broad prospects in the field of network security, but only if it is used reasonably. Like all other technologies, AI is definitely not a silver bullet. Even having the most advanced technology does not mean 100% protection. Artificial intelligence will not save you from serious attacks caused by ignoring basic cybersecurity rules.

The correct approach is to establish an ecosystem that can adapt to constant changes and continuously make corrections or adjustments while developing and implementing intelligent algorithms to generate real benefits. As you can imagine, this is a time-consuming and arduous task, but considering that we are not using AI for hype or fashion, network security based on AI technology will and will eventually produce huge value.

The above is the detailed content of How to use AI in cybersecurity. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles