Table of Contents
Experimental results
Home Technology peripherals AI For the first time, 'Teaching Director' is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

For the first time, 'Teaching Director' is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

Apr 14, 2023 pm 03:46 PM
Model Research

Faced with increasingly sophisticated deep learning models and massive video big data, artificial intelligence algorithms are increasingly dependent on computing resources. In order to effectively improve the performance and efficiency of deep models, by exploring the distillability and sparsity of the model, this paper proposes a unified model compression technology based on the " Dean-Teacher-Student" model.

This result was completed by a joint research team of the People's National Science and Technology Institute of Technology and the Institute of Automation, Chinese Academy of Sciences. The relevant paper was published in the top international journal on artificial intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) on. This achievement is the first time that the role of “teaching director” has been introduced into model distillation technology, unifying the distillation and tailoring of deep models.

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

##Paper address: https://ieeexplore.ieee.org/abstract/document/9804342

At present, this achievement has been applied to the cross-modal intelligent search engine "Baize" independently developed by People's Science and Technology. "Baize" breaks the barriers of information expression between different modalities such as graphics, text, audio and video, and maps different modal information such as text, pictures, voice and video into a unified feature representation space, with video as the core, learning multiple modalities A unified distance measurement can be used to bridge the semantic gap of multi-modal content such as text, voice, and video to achieve unified search capabilities.

However, in the face of massive Internet data, especially video big data, the consumption of computing resources by cross-modal deep models is gradually increasing. Based on this research result, "Baize" can compress the model size on a large scale while ensuring algorithm performance, thereby achieving high-throughput and low-power cross-modal intelligent understanding and search capabilities. According to preliminary practical applications, this technology can compress the parameter scale of large models by more than four times on average. On the one hand, it can greatly reduce the model's consumption of high-performance computing resources such as GPU servers. On the other hand, large models that cannot be deployed on the edge can be distilled and compressed to achieve low-power deployment on the edge.

Federated learning framework for model compression

Compression and acceleration of deep algorithm models can be achieved through distillation learning or structured sparse clipping, but this There are some limitations in both areas. For the distillation learning method, it aims to train a lightweight model (i.e., student network) to simulate a complex and large model (i.e., teacher network). Under the guidance of the teacher network, the student network can achieve better performance than training alone.

However, distillation learning algorithms only focus on improving the performance of student networks and often ignore the importance of network structure. The structure of the student network is generally predefined and fixed during the training process.

For structured sparse clipping or filter clipping, these methods aim to clip a redundant and complex network into a sparse and compact network. However, model cropping is only used to obtain a compact structure. None of the existing methods make full use of the "knowledge" contained in the original complex model. Recent research combines distillation learning with structured sparse pruning in order to balance model performance and size. But these methods are limited to simple combinations of loss functions.

In order to analyze the above issues in depth, this study first trained the model based on compressed sensing. By analyzing the model performance and structure, it was found that there are two important attributes for deep algorithm models: distillability Distillability and sparsability.

Specifically, distillability refers to the density of effective knowledge that can be distilled from the teacher network. It can be measured by the performance gains achieved by a student network under the guidance of a teacher network. For example, student networks with higher distillability can achieve higher performance. Distillability can also be quantitatively analyzed at the network layer level.

As shown in Figure 1-(a), the bar graph represents the cosine similarity (Cosine Similarity) between the distillation learning loss gradient and the true value classification loss gradient. A larger cosine similarity indicates that the knowledge of the current distillation is more helpful for model performance. In this way, cosine similarity can also be a measure of distillability. It can be seen from Figure 1-(a) that the distillability gradually increases as the number of model layers becomes deeper. This also explains why supervision commonly used in distillation learning is applied in the last few layers of the model. Moreover, in different training rounds, the student model also has different distillability, because the cosine similarity also changes as the training time changes. Therefore, it is necessary to dynamically analyze the distillability of different layers during the training process.

On the other hand, sparsity refers to the cropping rate (or compression rate) that the model can obtain under limited accuracy loss. Higher sparsability corresponds to the potential for higher cropping rates. As shown in Figure 1-(b), different layers or modules of the network exhibit different sparsibility. Similar to distillability, sparsibility can also be analyzed at the network layer level and in the time dimension. However, there are currently no methods to explore and analyze distillability and rarefaction. Existing methods often use a fixed training mechanism, which makes it difficult to achieve an optimal result.

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

Figure 1 Schematic diagram of distillability and sparsity of deep neural networks

In order to solve the above problems, this study analyzes the training process of model compression to obtain relevant findings about distillability and sparsability. Inspired by these findings, this study proposes a model compression method based on joint learning of dynamic distillability and sparsity. It can dynamically combine distillation learning and structured sparse clipping, and adaptively adjust the joint training mechanism by learning distillability and sparsity.

Different from the conventional "Teacher-Student" framework, the method proposed in this article can be described as a "Learning-in-School" framework. Because it contains three major modules: teacher network, student network and dean network.

Specifically, the same as before, the teacher network teaches the student network. The teaching director network is responsible for controlling the intensity of students' online learning and the way they learn. By obtaining the status of the current teacher network and student network, the dean network can evaluate the distillability and sparsibility of the current student network, and then dynamically balance and control the strength of distillation learning supervision and structured sparse clipping supervision.

In order to optimize the method in this article, this research also proposes a joint optimization algorithm of distillation learning & tailoring based on the alternating direction multiplier method to update the student network. In order to optimize and update the teaching director network, this paper proposes a teaching director optimization algorithm based on meta-learning. Distillability can in turn be influenced by dynamically adjusting the supervision signal. As shown in Figure 1-(a), the method in this paper proves to be able to delay the downward trend of distillability and improve the overall distillability by rationally utilizing the knowledge of distillation.

The overall algorithm framework and flow chart of this article’s method are shown in the figure below. The framework contains three major modules, teacher network, student network and dean network. Among them, the initial complex redundant network to be compressed and trimmed is regarded as the teacher network, and in the subsequent training process, the original network that is gradually sparse is regarded as the student network. The dean network is a meta-network that inputs the information of the teacher network and the student network to measure the current distillability and sparsity, thereby controlling the supervision intensity of distillation learning and sparseness.

In this way, at every moment, the student network can be guided and sparsified by dynamically distilled knowledge. For example, when the student network has a higher distillability, the dean will let a stronger distillation supervision signal guide the student network (see the pink arrow signal in Figure 2); on the contrary, when the student network has a higher sparseness Therefore, the dean will exert a stronger sparse supervision signal on the student network (see the orange arrow signal in Figure 2).

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

Figure 2 Schematic diagram of model compression algorithm based on joint learning of distillability and sparsity

Experimental results

The experiment compares the method proposed in this article with 24 mainstream model compression methods (including sparse clipping methods and distillation learning methods) on the small-scale data set CIFAR and the large-scale data set ImageNet. The experimental results are shown in the figure below, which prove the superiority of the method proposed in this article.

Table 1 Performance comparison of model cropping results on CIFAR10:

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

Table 2 on ImageNet Performance comparison of model cropping results:

For the first time, Teaching Director is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.

For more research details, please refer to the original paper.

The above is the detailed content of For the first time, 'Teaching Director' is introduced into model distillation, and large-scale compression is better than 24 SOTA methods.. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo May 07, 2024 pm 04:13 PM

Imagine an artificial intelligence model that not only has the ability to surpass traditional computing, but also achieves more efficient performance at a lower cost. This is not science fiction, DeepSeek-V2[1], the world’s most powerful open source MoE model is here. DeepSeek-V2 is a powerful mixture of experts (MoE) language model with the characteristics of economical training and efficient inference. It consists of 236B parameters, 21B of which are used to activate each marker. Compared with DeepSeek67B, DeepSeek-V2 has stronger performance, while saving 42.5% of training costs, reducing KV cache by 93.3%, and increasing the maximum generation throughput to 5.76 times. DeepSeek is a company exploring general artificial intelligence

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao Apr 09, 2024 am 11:52 AM

AI is indeed changing mathematics. Recently, Tao Zhexuan, who has been paying close attention to this issue, forwarded the latest issue of "Bulletin of the American Mathematical Society" (Bulletin of the American Mathematical Society). Focusing on the topic "Will machines change mathematics?", many mathematicians expressed their opinions. The whole process was full of sparks, hardcore and exciting. The author has a strong lineup, including Fields Medal winner Akshay Venkatesh, Chinese mathematician Zheng Lejun, NYU computer scientist Ernest Davis and many other well-known scholars in the industry. The world of AI has changed dramatically. You know, many of these articles were submitted a year ago.

Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

KAN, which replaces MLP, has been extended to convolution by open source projects KAN, which replaces MLP, has been extended to convolution by open source projects Jun 01, 2024 pm 10:03 PM

Earlier this month, researchers from MIT and other institutions proposed a very promising alternative to MLP - KAN. KAN outperforms MLP in terms of accuracy and interpretability. And it can outperform MLP running with a larger number of parameters with a very small number of parameters. For example, the authors stated that they used KAN to reproduce DeepMind's results with a smaller network and a higher degree of automation. Specifically, DeepMind's MLP has about 300,000 parameters, while KAN only has about 200 parameters. KAN has a strong mathematical foundation like MLP. MLP is based on the universal approximation theorem, while KAN is based on the Kolmogorov-Arnold representation theorem. As shown in the figure below, KAN has

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! May 06, 2024 pm 04:13 PM

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

FisheyeDetNet: the first target detection algorithm based on fisheye camera FisheyeDetNet: the first target detection algorithm based on fisheye camera Apr 26, 2024 am 11:37 AM

Target detection is a relatively mature problem in autonomous driving systems, among which pedestrian detection is one of the earliest algorithms to be deployed. Very comprehensive research has been carried out in most papers. However, distance perception using fisheye cameras for surround view is relatively less studied. Due to large radial distortion, standard bounding box representation is difficult to implement in fisheye cameras. To alleviate the above description, we explore extended bounding box, ellipse, and general polygon designs into polar/angular representations and define an instance segmentation mIOU metric to analyze these representations. The proposed model fisheyeDetNet with polygonal shape outperforms other models and simultaneously achieves 49.5% mAP on the Valeo fisheye camera dataset for autonomous driving

DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! DualBEV: significantly surpassing BEVFormer and BEVDet4D, open the book! Mar 21, 2024 pm 05:21 PM

This paper explores the problem of accurately detecting objects from different viewing angles (such as perspective and bird's-eye view) in autonomous driving, especially how to effectively transform features from perspective (PV) to bird's-eye view (BEV) space. Transformation is implemented via the Visual Transformation (VT) module. Existing methods are broadly divided into two strategies: 2D to 3D and 3D to 2D conversion. 2D-to-3D methods improve dense 2D features by predicting depth probabilities, but the inherent uncertainty of depth predictions, especially in distant regions, may introduce inaccuracies. While 3D to 2D methods usually use 3D queries to sample 2D features and learn the attention weights of the correspondence between 3D and 2D features through a Transformer, which increases the computational and deployment time.

See all articles