We know that Pandas is the most widely used data analysis and manipulation library in Python. It provides many functions and methods to quickly solve data processing problems in data analysis.
In order to better master the use of Python functions, I took the customer churn data set as an example to share the 30 most commonly used functions and methods in the data analysis process. The data can be downloaded at the end of the article.
The data is as follows:
import numpy as np import pandas as pd df = pd.read_csv("Churn_Modelling.csv") print(df.shape) df.columns
Result output
(10000, 14) Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography','Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard','IsActiveMember', 'EstimatedSalary', 'Exited'],dtype='object')
df.drop(['RowNumber', 'CustomerId', 'Surname', 'CreditScore'], axis=1, inplace=True) print(df[:2]) print(df.shape)
Result output
Description: "axis ” parameter is set to 1 for columns and 0 for rows. Set the "inplace=True" parameter to True to save changes. We subtracted 4 columns, so the number of columns was reduced from 14 to 10.
GeographyGenderAgeTenureBalanceNumOfProductsHasCrCard 0FranceFemale 42 20.011 IsActiveMemberEstimatedSalaryExited 0 1101348.88 1 (10000, 10)
We read partial column data from the csv file. The usecols parameter can be used.
df_spec = pd.read_csv("Churn_Modelling.csv", usecols=['Gender', 'Age', 'Tenure', 'Balance']) df_spec.head()
You can use the nrows parameter to create a data frame containing the first 5000 rows of the csv file. You can also use the skiprows parameter to select lines from the end of the file. Skiprows=5000 means we will skip the first 5000 rows when reading the csv file.
df_partial = pd.read_csv("Churn_Modelling.csv", nrows=5000) print(df_partial.shape)
After creating the data frame, we may need a small sample to test the data. We can use the n or frac parameter to determine the sample size.
df= pd.read_csv("Churn_Modelling.csv", usecols=['Gender', 'Age', 'Tenure', 'Balance']) df_sample = df.sample(n=1000) df_sample2 = df.sample(frac=0.1)
The isna function determines missing values in a data frame. By using isna with the sum function we can see the number of missing values in each column.
df.isna().sum()
Use loc and iloc to add missing values. The difference between the two is as follows:
We first create 20 random indexes for selection.
missing_index = np.random.randint(10000, size=20)
We will use loc to change some values to np.nan (missing values).
df.loc[missing_index, ['Balance','Geography']] = np.nan
20 values are missing in the "Balance" and "Geography" columns. Let's do another example using iloc.
df.iloc[missing_index, -1] = np.nan
The fillna function is used to fill in missing values. It provides many options. We can use a specific value, an aggregate function such as mean, or the previous or next value.
avg = df['Balance'].mean() df['Balance'].fillna(value=avg, inplace=True)
fillna The method parameter of the function can be used to fill missing values based on the previous or next value in the column (for example, method="ffill"). It can be very useful for sequential data such as time series.
Another way to deal with missing values is to delete them. The following code will delete rows with any missing values.
df.dropna(axis=0, how='any', inplace=True)
In some cases, we need observations (i.e. rows) that fit certain conditions
france_churn = df[(df.Geography == 'France') & (df.Exited == 1)] france_churn.Geography.value_counts()
Query functions provide a more flexible way to pass conditions. We can describe them using strings.
df2 = df.query('80000 < Balance < 100000') df2 = df.query('80000 < Balance < 100000' df2 = df.query('80000 < Balance < 100000')
Conditions may have multiple values. In this case, it's better to use the isin method instead of writing the values individually.
df[df['Tenure'].isin([4,6,9,10])][:3]
Pandas Groupby function is a versatile and easy-to-use function that helps in getting an overview of your data. It makes it easier to explore data sets and reveal underlying relationships between variables.
We will do several examples of group ratio functions. Let's start simple. The following code will group rows based on the combination of Geography and Gender, and then give the average flow of each group
df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean()
agg function allows multiple applications to be applied to the group an aggregate function, with a list of functions passed as arguments.
df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).agg(['mean','count'])
df_summary = df[['Geography','Exited','Balance']].groupby('Geography').agg({'Exited':'sum', 'Balance':'mean'}) df_summary.rename(columns={'Exited':'# of churned customers', 'Balance':'Average Balance of Customers'},inplace=True)
In addition, the "NamedAgg function" allows renaming the columns in the aggregation
import pandas as pd df_summary = df[['Geography','Exited','Balance']].groupby('Geography').agg(Number_of_churned_customers = pd.NamedAgg('Exited', 'sum'),Average_balance_of_customers = pd.NamedAgg('Balance', 'mean')) print(df_summary)
Have you noticed the data format in the above picture? We can change this by resetting the index.
print(df_summary.reset_index())
In some cases, we need to reset the index and delete the original index at the same time.
df[['Geography','Exited','Balance']].sample(n=6).reset_index(drop=True)
We can set any column in the data frame as index.
df_new.set_index('Geography')
group = np.random.randint(10, size=6) df_new['Group'] = group
It is used to replace values in rows or columns based on conditions. The default replacement value is NaN, but we can also specify a replacement value.
df_new['Balance'] = df_new['Balance'].where(df_new['Group'] >= 6, 0)
The rank function assigns a ranking to a value. Let's create a column that ranks customers based on their balance.
df_new['rank'] = df_new['Balance'].rank(method='first', ascending=False).astype('int')
It comes in handy when working with categorical variables. We may need to check the number of unique categories. We can check the size of the sequence returned by the value count function or use the nunique function.
df.Geography.nunique
Using the function memory_usage, these values show the memory in bytes.
df.memory_usage()
默认情况下,分类数据与对象数据类型一起存储。但是,它可能会导致不必要的内存使用,尤其是当分类变量具有较低的基数。
低基数意味着列与行数相比几乎没有唯一值。例如,地理列具有 3 个唯一值和 10000 行。
我们可以通过将其数据类型更改为"类别"来节省内存。
df['Geography'] = df['Geography'].astype('category')
替换函数可用于替换数据帧中的值。
df['Geography'].replace({0:'B1',1:'B2'})
pandas 不是一个数据可视化库,但它使得创建基本绘图变得非常简单。
我发现使用 Pandas 创建基本绘图更容易,而不是使用其他数据可视化库。
让我们创建平衡列的直方图。
pandas 可能会为浮点数显示过多的小数点。我们可以轻松地调整它。
df['Balance'].plot(kind='hist', figsize=(10,6), title='Customer Balance')
我们可以更改各种参数的默认显示选项,而不是每次手动调整显示选项。
pd.set_option("display.precision", 2)
可能要更改的一些其他选项包括:
pct_change用于计算序列中值的变化百分比。在计算时间序列或元素顺序数组中更改的百分比时,它很有用。
ser= pd.Series([2,4,5,6,72,4,6,72]) ser.pct_change()
我们可能需要根据文本数据(如客户名称)筛选观测值(行)。我已经在数据帧中添加了df_new名称。
df_new[df_new.Names.str.startswith('Mi')]
我们可能需要根据文本数据(如客户名称)筛选观测值(行)。我已经在数据帧中添加了df_new名称。
我们可以通过使用返回 Style 对象的 Style 属性来实现此目的,它提供了许多用于格式化和显示数据框的选项。例如,我们可以突出显示最小值或最大值。
它还允许应用自定义样式函数。
df_new.style.highlight_max(axis=0, color='darkgreen')
The above is the detailed content of Thirty Python functions solve 99% of data processing tasks!. For more information, please follow other related articles on the PHP Chinese website!