Home > Technology peripherals > AI > body text

Python Deep Learning 18-DeepDream of Generative Deep Learning

WBOY
Release: 2023-04-16 21:34:01
forward
1664 people have browsed it

​DeepDream Introduction

DeepDream is an artistic image modification technology, which is mainly based on the trained convolutional neural network CNN to generate images.

When generating images, the neural network is frozen, that is, the weights of the network are no longer updated, only the input images need to be updated. Commonly used pre-trained convolutional networks include Google's Inception, VGG network and ResNet network, etc.

Basic steps of DeePDream:

  • Get the input image
  • Input the image into the network and get the output value of the neuron you want to visualize
  • Calculate the gradient of the neuron output value to each pixel of the picture
  • Use gradient descent to continuously update the picture

Repeat steps 2, 3, and 4 until the set conditions are met

The following is the general process of using Keras to implement DeepDream:

Using Keras to implement DeepDream

Get the test image

In [1]:

# ---------------
from tensorflow import keras
import matplotlib.pyplot as plt
%matplotlib inline

base_image_path = keras.utils.get_file(
"coast.jpg", 
origin="https://img-datasets.s3.amazonaws.com/coast.jpg")

plt.axis("off")
plt.imshow(keras.utils.load_img(base_image_path))
plt.show()
Copy after login

Python Deep Learning 18-DeepDream of Generative Deep Learning

The above is a picture of the coastline that comes with Keras. Here are the changes to this picture.

Prepare the pre-trained model InceptionV3

In [2]:

# 使用Inception V3实现
from keras.applications import inception_v3

# 使用预训练的ImageNet权重来加载模型
model = inception_v3.InceptionV3(weights="imagenet", # 构建不包含全连接层的Inceptino 
 include_top=False)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
87916544/87910968 [==============================] - 74s 1us/step
87924736/87910968 [==============================] - 74s 1us/step
Copy after login

In [3]:

model.summary()
Copy after login

Python Deep Learning 18-DeepDream of Generative Deep Learning

Set DeepDream configuration

In [4]:

# 层的名称 + 系数:该层对需要最大化的损失的贡献大小

layer_settings = {"mixed4":1.0, 
"mixed5":1.5,
"mixed6":2.0,
"mixed7":2.5}

outputs_dict = dict(
[
(layer.name, layer.output) # 层的名字 + 该层的输出
for layer in [model.get_layer(name) for name in layer_settings.keys()]
]
)

outputs_dict
Copy after login

Out[4]:

{'mixed4': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed4')>,
 'mixed5': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed5')>,
 'mixed6': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed6')>,
 'mixed7': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed7')>}
Copy after login

In [5]:

# 特征提取

feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)
feature_extractor
Copy after login

Out[5]:

<keras.engine.functional.Functional at 0x15b5ff0d0>
Copy after login

Calculating loss

In [6]:

def compute_loss(image):
features = feature_extractor(image)# 特征提取
loss = tf.zeros(shape=())# 损失初始化

for name in features.keys():# 遍历层
coeff = layer_settings[name] # 某个层的系数
activation = features[name]# 某个层的激活函数
#为了避免出现边界伪影,损失中仅包含非边界的像素
loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) # 将该层的L2范数添加到loss中;
return loss
Copy after login

Gradient ascent process

In [7]:

import tensorflow as tf

@tf.function
def gradient_ascent_step(image, lr): # lr--->learning_rate学习率
with tf.GradientTape() as tape:
tape.watch(image)
loss = compute_loss(image)# 调用计算损失方法
grads = tape.gradient(loss, image)# 梯度更新
grads = tf.math.l2_normalize(grads)
image += lr * grads
return loss, image

def gradient_ascent_loop(image, iterations, lr, max_loss=None):
for i in range(iterations):
loss, image = gradient_ascent_step(image, lr)
if max_loss is not None and loss > max_loss:
break
print(f"第{i}步的损失值是{loss:.2f}")

return image
Copy after login

Picture generation

np.expand_dims usage (personal addition)

In [8]:

import numpy as np

array = np.array([[1,2,3],
[4,5,6]]
)
array
Copy after login

Out[8]:

array([[1, 2, 3],
 [4, 5, 6]])
Copy after login

In [9]:

array.shape
Copy after login

Out[9]:

(2, 3)
Copy after login

In [10]:

array1 = np.expand_dims(array,axis=0)
array1
Copy after login

Out[10]:

array([[[1, 2, 3],
[4, 5, 6]]])
Copy after login

In [ 11]:

array1.shape
Copy after login

Out[11]:

(1, 2, 3)
Copy after login

In [12]:

array2 = np.expand_dims(array,axis=1)
array2
Copy after login

Out[12]:

array([[[1, 2, 3]],

 [[4, 5, 6]]])
Copy after login

In [13] :

array2.shape
Copy after login

Out[13]:

(2, 1, 3)
Copy after login

In [14]:

array3 = np.expand_dims(array,axis=-1)
array3
Copy after login

Out[14]:

array([[[1],
[2],
[3]],

 [[4],
[5],
[6]]])
Copy after login

In [15]:

array3.shape
Copy after login

Out[15]:

(2, 3, 1)
Copy after login

np.clip function (personally added)

np.clip(
array, 
min(array), 
max(array), 
out=None):
Copy after login

In [16]:

array = np.array([1,2,3,4,5,6])

np.clip(array, 2, 5)# 输出长度和原数组相同
Copy after login

Out[16]:

array([2, 2, 3, 4, 5, 5])
Copy after login

In [17]:

array = np.arange(18).reshape((6,3))
array
Copy after login

Out[17]:

array([[ 0,1,2],
 [ 3,4,5],
 [ 6,7,8],
 [ 9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]])
Copy after login

In [18]:

np.clip(array, 5, 15)
Copy after login

Out[18]:

array([[ 5,5,5],
 [ 5,5,5],
 [ 6,7,8],
 [ 9, 10, 11],
 [12, 13, 14],
 [15, 15, 15]])
Copy after login

Parameter setting

In [19]:

step = 20.#梯度上升的步长
num_octave = 3# 运行梯度上升的尺度个数
octave_scale = 1.4# 两个尺度间的比例大小
iterations = 30# 在每个尺度上运行梯度上升的步数
max_loss = 15.# 损失值若大于15,则中断梯度上升过程
Copy after login

Picture preprocessing

In [20]:

import numpy as np

def preprocess_image(image_path):# 预处理
img = keras.utils.load_img(image_path)# 导入图片
img = keras.utils.img_to_array(img)# 转成数组
img = np.expand_dims(img, axis=0)# 增加数组维度;见上面解释(x,y) ---->(1,x,y)
img = keras.applications.inception_v3.preprocess_input(img) 
return img


def deprocess_image(img):# 图片压缩处理
img = img.reshape((img.shape[1], img.shape[2], 3))
img /= 2.0
img += 0.5
img *= 255.
# np.clip:截断功能,保证数组中的取值在0-255之间
img = np.clip(img, 0, 255).astype("uint8")
return img
Copy after login

Generate picture

In [21]:

# step = 20.#梯度上升的步长
# num_octave = 3# 运行梯度上升的尺度个数
# octave_scale = 1.4# 两个尺度间的比例大小
# iterations = 30# 在每个尺度上运行梯度上升的步数
# max_loss = 15.0# 损失值若大于15,则中断梯度上升过程

original_img = preprocess_image(base_image_path)# 预处理函数
original_shape = original_img.shape[1:3]

print(original_img.shape)# 四维图像
print(original_shape)# 第2和3维度的值
(1, 900, 1200, 3)
(900, 1200)
Copy after login

In [22]:

successive_shapes = [original_shape]

for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]# 翻转

shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])

img = tf.identity(original_img)
for i, shape in enumerate(successive_shapes):
print(f"Processing octave {i} with shape {shape}")
# resize
img = tf.image.resize(img, shape)
img = gradient_ascent_loop(# 梯度上升函数调用
img, 
iteratinotallow=iterations, 
lr=step, 
max_loss=max_loss
)
# resize
upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
same_size_original = tf.image.resize(original_img, shape)

lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = tf.image.resize(original_img, shape)

keras.utils.save_img("dream.png", deprocess_image(img.numpy()))
Copy after login

The result is:

Processing octave 0 with shape (459, 612)
第0步的损失值是0.80
第1步的损失值是1.07
第2步的损失值是1.44
第3步的损失值是1.82
......
第26步的损失值是11.44
第27步的损失值是11.72
第28步的损失值是12.03
第29步的损失值是12.49
Copy after login

At the same time, a new picture is generated locally. Take a look at the effect:

Python Deep Learning 18-DeepDream of Generative Deep Learning

Take another look at the original picture: In comparison, the new picture is a bit dreamy!

Python Deep Learning 18-DeepDream of Generative Deep Learning


The above is the detailed content of Python Deep Learning 18-DeepDream of Generative Deep Learning. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:51cto.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template