The value of artificial intelligence in IoT analytics
In many parts of Asia, seasonal heavy rains bring flooding, destroying citizens’ property and livelihoods. In the past, city administrations, citizens and businesses could do little but protect against flooding and the potential illnesses it brought. And technologies such as the Internet of Things (IoT), machine learning (ML) and artificial intelligence (AI) may provide breathing room for more forward-thinking leaders.
This is the application of DKI Jakarta Provincial Government Flood Control System in Jakarta Smart City. The project was developed by Jakarta Smart City in partnership with the Jakarta Water Services Agency (DSDA) and aims to optimize flood risk management in Jakarta. The project involves using IoT, artificial intelligence and machine learning as part of an early warning system to combat flooding risks in cities.
As more organizations deploy the Internet of Things in commercial and industrial settings, the volume of data coming from these devices and sensors may have a significant impact on improving quality, operational efficiency, and in Jakarta It is of great significance to save lives and property from natural disasters.
The speed and accuracy with which IoT systems can respond to their environment is critical, according to Kenneth Koh, director of industry consulting at SAS Institute. However, because devices and other sensors in typical systems generate large amounts of data, traditional tools and methods can slow down the process of making sense of this data.
What is Artificial Intelligence Embedded Internet of Things?
Kenneth Koh: Processing data at or near the edge can make IoT systems more flexible and impactful. However, the quality of data-led actions is as meaningful as the quality of the data-based insights on which it is based.
The Internet of Things itself is not new to manufacturers. Manufacturers have been collecting and storing sensor data from machines for decades. Their value proposition lies in AIoT – analyzing data in real time at the edge, leveraging artificial intelligence and machine learning to increase efficiency and value.
By equipping IoT systems with artificial intelligence capabilities, a variety of structured and unstructured data can be processed at the edge. Deliver high-quality insights faster for systems to act on.
How Artificial Intelligence Embedded IoT Unlocks Business Value
Kenneth Koh: Artificial Intelligence Embedded IoT improves operational efficiency and productivity, At the same time, the cost is reduced. It also drives innovation to provide better customer service, better products and faster time to market.
Embedding AI in IoT devices enables edge computing, allowing the deployment of IoT systems where consistent 5G networks are unavailable. For example, logistics providers can use IoT sensors in their transport fleets to monitor the internal and external conditions of vehicles, even in remote areas of the latter routes.
In addition to edge computing, AI-embedded IoT leverages machine learning to develop actionable insights from the terabytes of data generated by IoT systems every day. In the example above, data collected from these sensors is sent to the cloud in real time, allowing technicians to troubleshoot vehicle problems more accurately and faster.
Manufacturers can also use these insights to predict when a specific factory system or piece of equipment will fail, allowing technicians to implement preventive maintenance. Proactively detecting faulty equipment saves valuable man-hours while reducing costly unplanned downtime.
In retail, insights from IoT systems can be used to determine the optimal price for a product and minimize disruption to its supply chain.
The role of machine learning in IoT analysis
Kenneth Koh: Machine learning is artificial intelligence embedded in IoT compared to other IoT Deployment advantages. The system can learn while processing the data generated by the sensors, using a variety of advanced analysis methods such as decision trees, random forests, gradient boosting, neural networks, support vector machines and factorization machines.
This saves businesses human time and experts in the organization. Without the need to train AI systems extensively, experts can focus on other critical tasks while non-data scientists can access, view and process the data.
Machine learning capabilities also increase the range of data that AI systems can access and process: visual images, text and even spoken speech, both online and offline. The increase in the quantity and quality of existing data increases the value and impact of the insights gained from it.
Combining these machine learning capabilities increases the speed and volume of data processing, enabling real-time actionable insights. This is crucial in many IoT systems.
How AIoT supports Jakarta Smart City: Leveraging SAS’s artificial intelligence platform, Jakarta Smart City is able to integrate multi-source data in real time and provide advanced analytics through IoT, machine learning and artificial intelligence technologies to provide emergency/disaster prediction capabilities and Optimize services to the public. The result is a flood emergency response that reduces flood risk in Jakarta.
Given that IoT is historically an operational technology, who should own IoT security?
Kenneth Koh: The introduction of IoT is ambiguous blur the line between enterprise IT and OT. Sensors and devices are connected to the network to create new systems and improve processes. At the same time, this convergence exposes traditional OT equipment and systems to threats they never faced before.
In fact, true device security is a combination of technology, process and best practices. Therefore, securing IoT systems should not be the exclusive domain of OT or IT teams, but should result in closer and more effective collaboration between the two.
However, this is easier said than done because IT security teams and OT security teams often don’t speak the same language, making it difficult to understand each other’s perspectives.
The distribution of responsibilities is completely different. Priorities often diverge, and regulations governing OT security and IT security are sometimes conflicting. Gaining an overview of all assets in a given environment makes it clear which assets and processes cannot fail under any circumstances.
By doing this, organizations can establish and practice unified cybersecurity to ensure data confidentiality, integrity, and availability.
Cite a best practice for IT and operations technicians to work together
Kenneth Koh: In manufacturing, data versus time Very sensitive. For example, if chemical concentrations in a process deviate from optimal concentrations, engineers may only have minutes to react to save tons of product.
In many semiconductor processes, engineers only have seconds to react. In this case, analytics needs to move to the “edge,” meaning data must be analyzed and decisions made on the machine or on the shop floor, rather than in the back office or engineering department.
This requires the ability to perform analytics wherever needed, such as on the machine, on the production floor, in the cloud or in the back office.
One of the main challenges is data silos. For organizations that have not implemented IT/OT convergence, there is a patchwork of unintegrated or partially integrated applications and enterprise systems. Without careful planning, introducing new data sources, such as IoT sensors, can compound the problem.
Implementing a data integration platform to connect IoT systems with an organization’s existing technology stack can break down silos between historical and future data while providing a single point of control Give all teams the same access. This ensures that IT and OT teams are on the same page, laying the foundation for better IT/OT integration.
The above is the detailed content of The value of artificial intelligence in IoT analytics. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
