How to solve Top-K problems using Java
Question
Find the smallest K number
Design an algorithm to find the smallest K number in the array. These k numbers can be returned in any order.
Solution to the problem
Method 1
Sort (bubble/select)
Ideas
1. Bubble sorting determines the final position every time it is executed. After executing K times, the result can be obtained. The time complexity is O(n * k). When k
2. Each time selection sorting is executed, the largest or smallest number will be determined and placed at one end. Through selection sorting, the maximum K number can be obtained by executing K times. The time complexity is O(N * K).
Code implementation
//冒泡排序 public static int[] topKByBubble(int[] arr, int k) { int[] ret = new int[k]; if (k == 0 || arr.length == 0) { return ret; } for (int i = 0; i < k; i++) { for (int j = arr.length - 1; j < i; j--) { if (arr[j] > arr[j + 1]) { swap(arr, j, j + 1); } } ret[i] = arr[i]; } return ret; } //选择排序 public static int[] topKBySelect(int[] arr, int k) { int[] ret = new int[k]; for (int i = 0; i < k; i++) { int maxIndex = i; int maxNum = arr[maxIndex]; for (int j = i + 1; j < arr.length; j++) { if (arr[j] > maxNum) { maxIndex = j; maxNum = arr[j]; } } if (maxIndex != i) { swap(arr, maxIndex, i); } ret[i] = arr[i]; } return ret; } public static void swap(int[] arr, int a, int b) { int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; }
Method 2
Divide and conquer-quick sort
Idea
1, the core of quick sort is divide and conquer The idea is to first divide the sequence into two parts through divide and conquer partition, and then recurse the two parts again;
2, use the divide and conquer idea, that is, divide the operation partition, adjust the sequence according to the main element pivot, compare The larger pivot is placed on the left end, and the smaller pivot is placed on the right end. This determines the pivotIndex of the main element pivot. If pivotIndex happens to be k-1, then the number in the first k-1 position is the top k largest element, that is, we require top K.
Time complexity: O(n)
Code implementation
public static int[] topKByPartition(int[] arr, int k){ if(arr.length == 0 || k <= 0){ return new int[0]; } return quickSort(arr,0,arr.length-1,k); } //快速排序 public static int[] quickSort(int[] arr, int low, int high, int k){ int n = arr.length; int pivotIndex = partition(arr, low, high); if(pivotIndex == k-1){ return Arrays.copyOfRange(arr,0,k); }else if(pivotIndex > k-1){ return quickSort(arr,low,pivotIndex-1,k); }else { return quickSort(arr,pivotIndex+1,high,k); } } public static int partition(int[] arr, int low, int high){ if(high - low == 0){ return low; } int pivot = arr[high]; int left = low; int right = high-1; while (left < right){ while (left < right && arr[left] > pivot){ left++; } while (left < right && arr[right] < pivot){ right--; } if(left < right){ swap(arr,left,right); }else { break; } } swap(arr,high,left); return left; } public static void swap(int[] arr,int a, int b){ int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; }
Method three
Use the heap
Ideas
1, build a maximum heap
2, traverse the original array, and put the elements into the queue. When the size of the heap is K, you only need to compare the top element of the heap with the next element. If it is greater than the top element of the heap, Then delete the element at the top of the heap and insert the element into the heap until all elements are traversed
3, and the K number stored in the queue is dequeued
Time complexity: O(N *logK)
Code implementation
public class TopK { public int[] smallestK(int[] arr, int k) { int[] ret = new int[k]; if(k==0 || arr.length==0){ return ret; } // 1,构建一个最大堆 // JDK的优先级队列是最小堆, 就要用到我们比较器 Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o2 - o1; } }); //2,遍历原数组,进行入队 for(int value:arr){ if(queue.size() < k){ queue.offer(value); }else{ if(value < queue.peek()){ queue.poll(); queue.offer(value); } } } //3,将queue中存储的K个元素出队 for(int i = 0;i < k;i++){ ret[i] = queue.poll(); } return ret; } }
The above is the detailed content of How to solve Top-K problems using Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Square Root in Java. Here we discuss how Square Root works in Java with example and its code implementation respectively.

Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to the Armstrong Number in Java. Here we discuss an introduction to Armstrong's number in java along with some of the code.

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is
