


Using Python argparse: How to handle command line arguments
1. Preface
argparse is a command line parameter parsing package for python. It is convenient to use when the code needs to frequently modify parameters. The main usage is Enter the parameters you want to modify on the command line.
2. Common frameworks for argparse usage
import argparse def get_parser(): # argparse.ArgumentParser生成argparse对象 description为描述信息,当在命令行输入需要显示帮助信息时,会显示 parser = argparse.ArgumentParser(description="pytorch unet training") # 路径参数设置 help为参数的帮助信息 parser.add_argument("--data_path", default="./", help="DRIVE root") # 预测类别数量 type如果不指定需要输入的是str类型 parser.add_argument("--num_classes", default=1, type=int) # 指定设备使用 parser.add_argument("--device", default="cuda", help="training device") # 指定batch size大小 "-b", "--batch_size"表示两个都可以在命令行使用 parser.add_argument("-b", "--batch_size", default=4, type=int) return parser if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print(args)
As mentioned above, get_parser() is some of the usage methods introduced in this article. This python file is called python_argparse_test1.py, in which
parser = argparse.ArgumentParser(description="pytorch unet training") is used to create a parser object
add_argument() is used to add parameters
args = parse_args() in parser.parse_args() to obtain parsing Parameters
1. Get the parameter list
When python python_argparse_test1.py is entered on the command line, print the parameters obtained by args and get:
Namespace(batch_size=4, data_path ='./', device='cuda', num_classes=1)
Indicates the parameter list parsed by this parameter parser
2. Get help information
Input python python_argparse_test1.py -h or python python_argparse_test1.py --help displays information, where usage shows its usage, pytorch unet training is the description when creating the object, and below is the information and usage of each parameter
3. Command line modification parameters
import argparse def get_parser(): # argparse.ArgumentParser生成argparse对象 description为描述信息,当在命令行输入需要显示帮助信息时,会显示 parser = argparse.ArgumentParser(description="pytorch unet training") # 路径参数设置 help为参数的帮助信息 default为默认参数 parser.add_argument("--data_path", default="./", help="DRIVE root") # 预测类别数量 type如果不指定需要输入的是str类型 parser.add_argument("--num_classes", default=1, type=int) # 指定设备使用 parser.add_argument("--device", default="cuda", help="training device") # 指定batch size大小 "-b", "--batch_size"表示两个都可以在命令行使用 parser.add_argument("-b", "--batch_size", default=4, type=int) return parser if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("data_path: ",args.data_path) print("num_classes: ", args.num_classes)
Command line input: python python_argparse_test1.py --data_path Desktop --num_classer 4, the result is as follows:
data_path: Desktop
num_classes: 4
You can see that the parameters have been modified through the command line
4. The use of '_' and "__"
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("-b: ",args.b) print("--batch_size: ", args.batch_size)
Enter python python_argparse_test1.py -b 10 --batch_size 20 on the command line, and an error will be reported:
This is because when '_' and '__' exist at the same time, The system defaults to the parameter name
. Change the above code to:
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("--batch_size: ",args.batch_size)
but the command line will not be affected. Continue to execute the command python python_argparse_test1.py -b 10 to get:
--batch_size: 10
5. Type usage
type will force the input command line characters to be converted into type type
if __name__ =='__main__': parser = get_parser() args = parser.parse_args() print("--batch_size type: ",type(args.batch_size))
Command line input: python python_argparse_test1 .py --batch_size '10' gets:
--batch_size type:
6.required: used to indicate whether this parameter needs to be provided
parser.add_argument("--num_classes", default=1, type=int, required=True)
If you enter the command python python_argparse_test1.py
This will report an error prompting the parameters that are indeed required
python_argparse_test1.py: error: the following arguments are required: --num_classes
7.choicesSelect parameters
parser.add_argument('-arch', required=True, choices=['alexnet', 'vgg'])
If you run the command: python python_argparse_test1.py -arch cnn
This will report an error
python_argparse_test1.py: error: argument - arch: invalid choice: 'cnn' (choose from 'alexnet', 'vgg')
The above is the detailed content of Using Python argparse: How to handle command line arguments. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
