How to modify dictionary values in Python
Use the dict.update()
method to replace the value in the dictionary, for example my_dict.update({'key': 'new value'})
.
dict.update()
method updates the dictionary using key-value pairs from the provided values.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } my_dict.update( {'name': '迹忆客', 'site': 'jiyik.com' } ) # ????️ {'name': '迹忆客', 'site': 'jiyik.com', 'id': 1, 'topic': 'Python'} print(my_dict)
We use the dict.update
method to replace values in the dictionary.
dict.update
method updates the dictionary using the key-value pairs from the supplied values.
This method overwrites the existing keys of the dictionary and returns None.
dict.update()
The method can be called with another dictionary or iterable of key-value pairs (for example, a list with 2 elements per tuple).
Passing keyword arguments to the dict.update() method
We can also pass keyword arguments to the dict.update()
method.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } my_dict.update( [ ('name', '迹忆客'), ('site', 'jiyik.com') ] ) # ????️ {'name': '迹忆客', 'site': 'jiyik.com', 'id': 1, 'topic': 'Python'} print(my_dict)
Alternatively, we can use the dictionary unpacking **
operator.
Use dictionary unpacking to replace values in the dictionary
To replace values in the dictionary:
Use dictionary unpacking operator unpacks key-value pairs into a new dictionary.
Specify the key with the updated value.
The new value will overwrite the value of the existing key.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } my_dict = { **my_dict, 'name': '迹忆客', 'site': 'jiyik.com' } # ????️ {'name': '迹忆客', 'site': 'jiyik.com', 'id': 1, 'topic': 'Python'} print(my_dict)
We use the dictionary unpacking **
operator to unpack the key-value pairs of the dictionary into a new dictionary.
Name and site keys overwrite the value of an existing key with the same name.
Alternatively, we can use a for
loop.
Use a for loop to replace values in a dictionary
To replace values in a dictionary:
Use a for loop to iterate over the items of the dictionary.
Check whether each value should be updated.
Replace matching value.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } for key, value in my_dict.items(): if value == 'default': if key == 'name': my_dict[key] = '迹忆客' elif key == 'site': my_dict[key] = 'jiyik.com' # ????️ {'name': '迹忆客', 'site': 'jiyik.com', 'id': 1, 'topic': 'Python'} print(my_dict)
dict.items
Method returns a new view of dictionary items ((key, value) pairs).
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } # ????️ dict_items([('name', 'default'), ('site', 'default'), ('id', 1), ('topic', 'Python')]) print(my_dict.items())
In each iteration we check if the current value should be replaced and replace the matching value.
Use dictionary merge operator to replace values in dictionary
We can also use dictionary merge operator to replace values in dictionary.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } my_dict = my_dict | { 'name': '迹忆客', 'site': 'jiyik.com' } # {'name': '迹忆客', 'site': 'jiyik.com', # 'id': 1, 'topic': 'Python'} print(my_dict)
Dictionary merging |
operator is available starting with Python version 3.9.
We can check the Python version by running the following command.
$ python --version
Dictionary merging |
operator creates a new dictionary.
This is also a dictionary update |=
operator for assignment.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } my_dict |= { 'name': '迹忆客', 'site': 'jiyik.com' } # {'name': '迹忆客', 'site': 'jiyik.com', # 'id': 1, 'topic': 'Python'} print(my_dict)
Make sure our Python version is 3.9 or higher to be able to run the code examples.
Replace values in a dictionary based on another dictionary
We can also use a for
loop to replace values in a dictionary based on another dictionary.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } another_dict = { 'name': '迹忆客', 'site': 'jiyik.com' } for key, value in another_dict.items(): my_dict[key] = value # ????️ {'name': '迹忆客', 'site': 'jiyik.com', # 'id': 1, 'topic': 'Python'} print(my_dict)
We use a for
loop to iterate over the items of the second dictionary.
In each iteration, we replace the key-value pairs of the first dictionary.
We can also check if the key exists in the first dictionary.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } another_dict = { 'name': '迹忆客', 'site': 'jiyik.com', 'abc': 'xyz', 'one': 'two', } for key, value in another_dict.items(): if key in my_dict: my_dict[key] = value # ????️ {'name': '迹忆客', 'site': 'jiyik.com', # 'id': 1, 'topic': 'Python'} print(my_dict)
In each iteration, we use the in
operator to check if the current key is contained in the dictionary.
Keys will only be replaced if they exist in the first dictionary.
Use dictionary comprehension to replace values in the dictionary
We can also use dictionary comprehension to replace values in the dictionary.
my_dict = { 'name': 'default', 'site': 'default', 'id': 1, 'topic': 'Python' } another_dict = { 'name': '迹忆客', 'site': 'jiyik.com', 'abc': 'xyz', 'one': 'two', } my_dict = { key: another_dict.get(key, value) for key, value in my_dict.items() } # {'name': '迹忆客', 'site': 'jiyik.com', # 'id': 1, 'topic': 'Python'} print(my_dict)
We use dictionary comprehensions to iterate over the items of the dictionary.
Dictionary comprehensions are very similar to list comprehensions.
They perform some operation on each key-value pair in the dictionary, or select a subset of key-value pairs that meet a condition.
In each iteration, we use the dict.get()
method to get the value of the key in the second dictionary.
We specify the current value as a fallback in case the key does not exist in the second dictionary.
The dict.get
method returns the value of the given key if the key is in the dictionary, otherwise it returns the default value.
This method takes the following 2 parameters:
key The key for which a value is to be returned
default If the provided key does not exist in the dictionary, return the default value (optional)
another_dict = { 'name': '迹忆客', 'site': 'jiyik.com', 'abc': 'xyz', 'one': 'two', } print(another_dict.get('id')) # ????️ None print(another_dict.get('topic')) # ????️ None print(another_dict.get('name')) # ????️ 迹忆客
If the value of the default parameter is not provided, the default is None, so the get()
method never raises KeyError
.
The above is the detailed content of How to modify dictionary values in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

DeepSeek is not a programming language, but a deep search concept. Implementing DeepSeek requires selection based on existing languages. For different application scenarios, it is necessary to choose the appropriate language and algorithms, and combine machine learning technology. Code quality, maintainability, and testing are crucial. Only by choosing the right programming language, algorithms and tools according to your needs and writing high-quality code can DeepSeek be successfully implemented.

Detailed explanation of DeepSeekAPI access and call: Quick Start Guide This article will guide you in detail how to access and call DeepSeekAPI, helping you easily use powerful AI models. Step 1: Get the API key to access the DeepSeek official website and click on the "Open Platform" in the upper right corner. You will get a certain number of free tokens (used to measure API usage). In the menu on the left, click "APIKeys" and then click "Create APIkey". Name your APIkey (for example, "test") and copy the generated key right away. Be sure to save this key properly, as it will only be displayed once

PiNetwork is about to launch PiBank, a revolutionary mobile banking platform! PiNetwork today released a major update on Elmahrosa (Face) PIMISRBank, referred to as PiBank, which perfectly integrates traditional banking services with PiNetwork cryptocurrency functions to realize the atomic exchange of fiat currencies and cryptocurrencies (supports the swap between fiat currencies such as the US dollar, euro, and Indonesian rupiah with cryptocurrencies such as PiCoin, USDT, and USDC). What is the charm of PiBank? Let's find out! PiBank's main functions: One-stop management of bank accounts and cryptocurrency assets. Support real-time transactions and adopt biospecies

This article explores the quantitative trading functions of the three major exchanges, Binance, OKX and Gate.io, aiming to help quantitative traders choose the right platform. The article first introduces the concepts, advantages and challenges of quantitative trading, and explains the functions that excellent quantitative trading software should have, such as API support, data sources, backtesting tools and risk control functions. Subsequently, the quantitative trading functions of the three exchanges were compared and analyzed in detail, pointing out their advantages and disadvantages respectively, and finally giving platform selection suggestions for quantitative traders of different levels of experience, and emphasizing the importance of risk assessment and strategic backtesting. Whether you are a novice or an experienced quantitative trader, this article will provide you with valuable reference

DeepSeekR1 model local deployment guide: Unlocking data analysis and prediction potential DeepSeek is a powerful data analysis and prediction tool, and its R1 model can provide efficient and accurate model support for various application scenarios. This guide will provide you with detailed instructions on how to deploy the DeepSeekR1 model in your on-premises environment to help you get started quickly and take advantage of its power. System requirements for the local deployment step preparation stage of the DeepSeekR1 model: Please make sure that your local machine meets the minimum system configuration requirements of DeepSeek (for specific requirements, please refer to the official DeepSeek document). Software installation: Download and install the installation package provided by DeepSeek and follow the installation guide

DeepSeek Deep Learning Library Python Call Guide DeepSeek is a powerful deep learning library that can be used to build and train various neural network models. This article will introduce in detail how to use Python to call DeepSeek for deep learning development. Steps to Call DeepSeek with Python 1. Install DeepSeek Make sure that the Python environment and pip tools are installed. Install DeepSeek with the following command: pipinstalldeepseek2. Import the DeepSeek library Import the DeepSeek library in a Python script or JupyterNotebook: impor

Anbi Alpha is a tool and service aggregation platform for professional traders and investors on the Binance platform. Its core functions include: 1. Strategy Square, which brings together different trading strategies; 2. Strategy builder, which allows custom trading strategies; 3. Advanced data analysis, providing market analysis tools; 4. Institutional-level services to meet the needs of professional investors.

As of 2024, mainstream cryptocurrency exchanges that support directly sending option hedging instructions through trading terminals: 1. Deribit supports advanced strategies such as Delta hedging and Gamma Scalping, and provide web version/API one-click hedging; 2. OKX supports volatility hedging and strategy combination tools, and a built-in hedging panel on the web/APP; 3. Binance supports protective hedging, requiring manual or API combination positions; 4. CME, providing standard options, requiring access through brokers; 5. LedgerX, providing professional-level hedging tools, requiring institutional certification.
