Let's talk about javascript division precision
For many programmers, JavaScript's numeric types seem to be a very simple part. But in fact, JavaScript division accuracy is a long-standing problem among developers.
The emergence of this problem stems from the data type design of JavaScript on the one hand, and the compromises made by ECMAScript to handle various special situations on the other hand. Specifically, the ECMAScript specification defines two number types: integers and floating point numbers. Floating-point numbers are divided into single-precision floating-point numbers (ie, 32-bit floating-point numbers) and double-precision floating-point numbers (ie, 64-bit floating-point numbers). In JavaScript, floating point numbers are of the Number type, and the only difference lies in the number of digits they occupy.
For example, let’s take a look at a simple division calculation:
console.log(1/3); // 输出 0.3333333333333333
This looks fine, but if we expand it:
console.log(1/3 + 1/3 + 1/3); // 输出 0.9999999999999999
The result is obviously not what we expected result. This is because JavaScript uses double-precision floating-point numbers when calculating, and the precision limit of double-precision floating-point numbers is limited. In particular, rounding errors occur when JavaScript operates on numbers that cannot be accurately represented as double-precision floating point numbers. This problem will not only affect the comparison of numerical values, but also have a negative impact on the correctness of data processing.
So how to avoid this problem?
In actual development, we can choose to use some libraries to handle calculation problems, such as BigDecimal.js. Such a library is suitable for performing floating point operations on large numbers and can obtain more accurate results. However, its use must also weigh the balance between calculation accuracy and memory usage.
In addition, another common solution is to convert floating point numbers into integers for calculation, and finally convert the results back. For example:
// 令计算精度到小数点后 2 位 var precision = 100; console.log(Math.round((1/3) * precision + (1/3) * precision + (1/3) * precision) / precision); // 输出 0.33
This method can avoid the precision problem of floating point number operations to a certain extent, but the precision value needs to be selected according to the specific situation.
In addition, we can also use the new Number.EPSILON constant and toFixed() method in ES6 to make up for the precision problem of JavaScript.
console.log(Math.abs((1/3 + 1/3 + 1/3) - 1) < Number.EPSILON); // 输出 true console.log((1/3 + 1/3 + 1/3).toFixed(2)); // 输出 "1.00"
Both of the above methods require attention to their applicable scope and limitations.
In general, the division precision problem in JavaScript is a common and difficult to deal with. Getting the details right requires some knowledge of mathematical operations and a deep understanding of the JavaScript language. I hope this article can help readers better avoid JavaScript division precision problems and improve the quality of their code.
The above is the detailed content of Let's talk about javascript division precision. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses useEffect in React, a hook for managing side effects like data fetching and DOM manipulation in functional components. It explains usage, common side effects, and cleanup to prevent issues like memory leaks.

Lazy loading delays loading of content until needed, improving web performance and user experience by reducing initial load times and server load.

The article explains React's reconciliation algorithm, which efficiently updates the DOM by comparing Virtual DOM trees. It discusses performance benefits, optimization techniques, and impacts on user experience.Character count: 159

The article discusses currying in JavaScript, a technique transforming multi-argument functions into single-argument function sequences. It explores currying's implementation, benefits like partial application, and practical uses, enhancing code read

Higher-order functions in JavaScript enhance code conciseness, reusability, modularity, and performance through abstraction, common patterns, and optimization techniques.

The article explains useContext in React, which simplifies state management by avoiding prop drilling. It discusses benefits like centralized state and performance improvements through reduced re-renders.

Article discusses connecting React components to Redux store using connect(), explaining mapStateToProps, mapDispatchToProps, and performance impacts.

Article discusses preventing default behavior in event handlers using preventDefault() method, its benefits like enhanced user experience, and potential issues like accessibility concerns.
