Because we need to use the streamlit
, streamlit-aggrid
and plotly
modules this time, first pass the The pip
command downloads these modules, of which streamlit-aggrid
is mainly used to present the data table on the page
pip install streamlit-aggrid pip install plotly
The overall page The structure is that there is a toolbar on the left, which contains some brief introductions to the web page, and a module that hopes users to rate and give feedback
. Section1 on the right is the template style of the project planning document, mainly in CSV Write clearly the details of the task in the file, including task name, task description, start and end time, etc. Section2 allows users to upload their own CSV files, modify the content of the items in the CSV file and provide a visual presentation, while Section3 exports the above content to an HTML file.
The following is the code part of the page
from st_aggrid import AgGrid import streamlit as st import pandas as pd import numpy as np import plotly.express as px from PIL import Image import io
Next we will develop the part of the toolbar on the left, mainly to provide a simple introduction to the page and scoring functions
logo = Image.open(r'wechat_logo.jpg') st.sidebar.image(logo, width=120) with st.sidebar.expander("关于此APP的功能"): st.write(""" 项目的简单介绍) """) with st.sidebar.form(key='columns_in_form',clear_on_submit=True): st.write('反馈') st.write('<style>div.row-widget.stRadio > div{flex-direction:row;} </style>', unsafe_allow_html=True) # 水平方向的按钮 rating=st.radio("打分",('1','2','3','4','5'),index=4) text=st.text_input(label='反馈') submitted = st.form_submit_button('提交') if submitted: st.write('感谢') st.markdown('您的评分是:') st.markdown(rating) st.markdown('您的反馈是:') st.markdown(text)
The results are shown in the figure below
The next step is the development of Section 1 of the main page, mainly for display The style of the project CSV file, which columns it contains, what the column names are, etc., the code is as follows
st.markdown(""" <style> .font { font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;} </style> """, unsafe_allow_html=True) st.markdown('<p class="font">上传您的CSV文件</p>', unsafe_allow_html=True) st.subheader('第一步:下载模板文件') image = Image.open(r'example.png') # 模板文件的截图 st.image(image, caption='确保列名是一致的') @st.cache_data def convert_df(df): return df.to_csv().encode('utf-8') df=pd.read_csv(r'template.csv', encoding='gbk') csv = convert_df(df) st.download_button( label="下载模板", data=csv, file_name='project_template.csv', mime='text/csv', )
We provide a download button that allows users to download the template file with one click, and the final appearance is like this
The next step is to upload our own CSV file, here we use the streamlit_aggrid
module , the advantage of this module is that it can display the data table and modify the data in it,
st.subheader('Step 2: Upload your project plan file') uploaded_file = st.file_uploader( "上传文件", type=['csv']) if uploaded_file is not None: Tasks = pd.read_csv(uploaded_file, encoding='gbk') Tasks['Start'] = Tasks['Start'].astype('datetime64') Tasks['Finish'] = Tasks['Finish'].astype('datetime64') grid_response = AgGrid( Tasks, editable=True, height=300, width='100%', ) updated = grid_response['data'] df = pd.DataFrame(updated)
output
Next It is a visual presentation of data. Here we use the Plotly
module to draw a Gantt chart. We can choose to draw it based on the team's dimension or the progress of the project completion. The code is as follows
st.subheader('第三部:绘制甘特图') Options = st.selectbox("以下面哪种维度来绘制甘特图:", ['Team', 'Completion Pct'], index=0) if st.button('绘制甘特图'): fig = px.timeline( df, x_start="Start", x_end="Finish", y="Task", color=Options, hover_name="Task Description" ) fig.update_yaxes( autorange="reversed") fig.update_layout( title='Project Plan Gantt Chart', bargap=0.2, height=600, xaxis_title="Date", yaxis_title="Project Name", title_x=0.5, xaxis=dict( tickfont_size=15, tickangle=270, rangeslider_visible=True, side="top", showgrid=True, zeroline=True, showline=True, showticklabels=True, tickformat="%x\n", ) ) fig.update_xaxes(tickangle=0, tickfont=dict(family='Rockwell', color='blue', size=15)) st.plotly_chart(fig, use_container_width=True) # 绘制甘特图至页面上 st.subheader( 'Bonus: 导出至HTML') buffer = io.StringIO() fig.write_html(buffer, include_plotlyjs='cdn') html_bytes = buffer.getvalue().encode() st.download_button( label='Export to HTML', data=html_bytes, file_name='Gantt.html', mime='text/html' ) else: st.write('---')
The above is the detailed content of How to implement Gantt chart drawing in Python?. For more information, please follow other related articles on the PHP Chinese website!